考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由于f
1(a
i+1)-f
1(a
i)=
-=
.可得I
1=
|-|×2014.由于f
i+1(a
i+1)-f
i(a
i)=
log2015-log2015=
log2015.即可得出I
2=
log2015(××…×)=log
20152015.
解答:
解:∵f
1(a
i+1)-f
1(a
i)=
-=
.
∴I
1=|f
1(a
2)-f
1(a
1)|+|f
1(a
3)-f
1(a
2)|+…+|f
1(a
2015)-f
1(a
2014)|
=
|-|×2014
=
.
∵f
2(a
i+1)-f
2(a
i)=
log2015-log2015=
log2015.
∴I
2=|f
2(a
2)-f
2(a
1)|+|f
2(a
3)-f
2(a
2)|+…+|f
2(a
2015)-f
2(a
2014)|
=
log2015(××…×)=log
20152015=1,
∴I
1<I
2.
故選:A.
點(diǎn)評(píng):本題考查了對(duì)數(shù)的運(yùn)算法則、含絕對(duì)值符號(hào)式的運(yùn)算,屬于基礎(chǔ)題.