在△ABC中,若∠A=
π
3
,b=2
,S△ABC= 3
3
,則
a+b+c
sinA+sinB+sinc
的值為( 。
A、4
7
B、
4
57
3
C、
4
39
3
D、
4
21
3
分析:由題設(shè)知3
3
=
1
2
×2c×sin
π
3
,解得c=6.再由余弦定理求出a的值,然后由
a+b+c
sinA+sinB+sinc
=
a
sinA
能求出其結(jié)果.
解答:解:∵在△ABC中,若∠A=
π
3
,b=2
,S△ABC= 3
3
,
∴3
3
=
1
2
×2c×sin
π
3
,解得c=6.
a2=36+4-2×2×6×cos
π
3
=28,a=2
7

a+b+c
sinA+sinB+sinc
=
a
sinA
=
2
7
3
2
=
4
21
3

故選D.
點(diǎn)評:本題考查正弦定理和余弦定理的應(yīng)用,解題時(shí)要注意公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出命題:
①函數(shù)y=2sinx-cosx的值域是[-2,1];
②函數(shù)y=sinπxcosπx是周期為2的奇函數(shù);
x=-
3
4
π
是函數(shù)y=sin(x+
π
4
)
的一條對稱軸;
④若sin2α<0,cosα-sinα<0,則α一定為第二象限角;
⑤在△ABC中,若A>B則sinA>sinB.
其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a=7,b=3,c=8,則其面積等于( 。
A、12
B、
21
2
C、28
D、6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若∠A=60°,∠B=45°,BC=
2
,則AC=
2
3
3
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的個(gè)數(shù)為( 。
(1)在△ABC中,若A>B,則sinA>sinB;
(2)已知
AB
=(3,4),
CD
=(-2,-1)
,則
AB
CD
上的投影為-2;
(3)已知p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,則“p∧¬q”為假命題;
(4)已知函數(shù)f(x)=sin(ωx+
π
6
)-2
(ω>0)的導(dǎo)函數(shù)的最大值為3,則函數(shù)f(x)的圖象關(guān)于x=
π
3
對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為銳角,且tanα=
2
-1
,函數(shù)f(x)=2xtan2α+sin(2α+
π
4
)
,數(shù)列{an}的首項(xiàng)a1=1,an+1=f(an).
(1)求函數(shù)f(x)的表達(dá)式;
(2)在△ABC中,若∠A=2α,∠C=
π
3
,BC=2,求△ABC的面積
(3)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案