【題目】有限集S中的元素個數(shù)記作,設A、B是有限集合,給出下列命題:

1的充分不必要條件是;

2的必要不充分條件是;

3的充要條件是

其中假命題是(寫題號)________________.

【答案】(1)(3)

【解析】

(1)分別判斷充分性與必要性證明即可.

(2)根據(jù)元素與集合的關系以及充分與必要條件的定義判斷即可.

(3)根據(jù)集合相等的定義判斷即可.

(1),即為集合的元素個數(shù)之和,即為.

又當,中的元素個數(shù)和等于中的元素個數(shù),.

的充要條件.(1)錯誤.

(2),中的元素個數(shù)小于等于中的元素個數(shù),,

但當也可能有不屬于的元素.

的充分不必要條件,的必要不充分條件是.

(2)正確.

(3)意為中的元素個數(shù)相等,并不一定有.(3)錯誤.

故答案為:(1)(3)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某面包推出一款新面包,每個面包的成本價為4元,售價為10元,該款面包當天只出一爐(一爐至少15個,至多30個),當天如果沒有售完,剩余的面包以每個2元的價格處理掉,為了確定這一爐面包的個數(shù),該店記錄了這款新面包最近30天的日需求量(單位:個),整理得下表:

(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個)線性相關,求關于的線性回歸方程;

(2)以30天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個數(shù)為24,記當日這款新面包獲得的總利潤為(單位:元).

(。┤羧招枨罅繛15個,求;

(ⅱ)求的分布列及其數(shù)學期望.

相關公式: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知被直線分成面積相等的四部分,且截軸所得線段的長為2.

(1)的方程;

(2)若存在過點的直線與相交于兩點,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),(為常數(shù))

(1)若

①求函數(shù)在區(qū)間上的最大值及最小值。

②若過點可作函數(shù)的三條不同的切線,求實數(shù)的取值范圍。

(2)當時,不等式恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某籃球隊甲、乙兩名運動員練習罰球,每人練習10組,每組罰球40個.命中個數(shù)的莖葉圖如圖,則下面結論中錯誤的一個是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼t

1

2

3

4

5

6

年產(chǎn)量y(萬噸)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根據(jù)表中數(shù)據(jù),建立關于的線性回歸方程;

(Ⅱ)根據(jù)線性回歸方程預測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.(參考數(shù)據(jù):,計算結果保留小數(shù)點后兩位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的等邊△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M為BC的中點.

(I)證明:AM⊥PM ;

(II)求二面角P-AM-D的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結論正確的是(  )

A. 這15天日平均溫度的極差為

B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天

C. 由折線圖能預測16日溫度要低于

D. 由折線圖能預測本月溫度小于的天數(shù)少于溫度大于的天數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)當時,求函數(shù)的單調(diào)減區(qū)間;

(2)若有三個不同的零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案