【題目】已知正項(xiàng)數(shù)列為等比數(shù)列,等差數(shù)列的前項(xiàng)和為,且滿足:
.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè),求;
(3)設(shè),問是否存在正整數(shù),使得.
【答案】(1);(2);(3).
【解析】
試題分析:(1)借助題設(shè)條件運(yùn)用等差數(shù)列的有關(guān)知識(shí)建立方程組求解;(2)借助題設(shè)運(yùn)用錯(cuò)位相減法求和;(3)依據(jù)題設(shè)運(yùn)用分類整合思想分析推證和探求.
試題解析:
(1)因?yàn)閿?shù)列為等差數(shù)列,且,
即,解得,公差為3,.............2分
所以,得..............3分
又,
所以....................5分
(2),.........①
則,..............②
將①—②得:
所以...................8分
(3)因?yàn)?/span>,
當(dāng)時(shí),,不等,...........9分
當(dāng)時(shí),,
成立,...............10分
當(dāng)且為奇數(shù)時(shí),為偶數(shù),為奇數(shù),
所以為偶數(shù),為奇數(shù),不成立,.............12分
當(dāng),且為偶數(shù)時(shí),若,
即,..................13分
得.............(*)
因?yàn)?/span>,所以(*)不成立.......15分
綜上得............................16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直.
注:為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(2)求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)擬在空地上建一個(gè)占地面積為2400平方米的矩形休閑廣場,按照設(shè)計(jì)要求,休閑廣場中間有兩個(gè)完全相同的矩形綠化區(qū)域,周邊及綠化區(qū)域之間是道路(圖中陰影部分),道路的寬度均為2米.怎樣設(shè)計(jì)矩形休閑廣場的長和寬,才能使綠化區(qū)域的總面積最大?并求出其最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知圓的圓心在直線上,且該圓存在兩點(diǎn)關(guān)于直線對(duì)稱,又圓與直線相切,過點(diǎn)的動(dòng)直線與圓相交于兩點(diǎn),是的中點(diǎn),直線與相交于點(diǎn).
(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠第一季度某產(chǎn)品月生產(chǎn)量依次為10萬件,12萬件,13萬件,為了預(yù)測以后每個(gè)月的產(chǎn)量,以這3個(gè)月的產(chǎn)量為依據(jù),用一個(gè)函數(shù)模擬該產(chǎn)品的月產(chǎn)量(單位:萬件)與月份的關(guān)系. 模擬函數(shù);模擬函數(shù).
(1)已知4月份的產(chǎn)量為萬件,問選用哪個(gè)函數(shù)作為模擬函數(shù)好?
(2)受工廠設(shè)備的影響,全年的每月產(chǎn)量都不超過15萬件,請(qǐng)選用合適的模擬函數(shù)預(yù)測6月份的產(chǎn)量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓:的離心率,過點(diǎn),的直線與原點(diǎn)的距離為,是橢圓上任一點(diǎn),從原點(diǎn)向圓:作兩條切線,分別交橢圓于點(diǎn),.
(Ⅰ)求橢圓的方程;
(Ⅱ)若記直線,的斜率分別為,,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
如圖,在五棱錐中,,且.
(1)已知點(diǎn)在線段上,確定的位置,使得;
(2)點(diǎn)分別在線段上,若沿直線將四邊形向上翻折,與恰好重合,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間為了制作某個(gè)零件,需從一塊扇形的鋼板余料(如圖1)中按照?qǐng)D2的方式裁剪一塊矩形鋼板,其中頂點(diǎn)、在半徑上,頂點(diǎn)在半徑上,頂點(diǎn)在上, , .設(shè),矩形的面積為.
(1)用含的式子表示, 的長;
(2)試將表示為的函數(shù);
(3)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),函數(shù)
(1)當(dāng)時(shí),解關(guān)于的不等式: ;
(2)若且,已知函數(shù)有兩個(gè)零點(diǎn)和,若點(diǎn), ,其中是坐標(biāo)原點(diǎn),證明: 與不可能垂直。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com