已知⊙C與兩平行直線x-y=0及x-y-4=0都相切,且圓心C在直線x+y=0上,
(Ⅰ)求⊙C的方程;
(Ⅱ)斜率為2的直線l與⊙C相交于A,B兩點,O為坐標原點且滿足
OA
OB
,求直線l的方程.
(Ⅰ)由題意知⊙C的直徑為兩平行線 x-y=0及x-y-4=0之間的距離
d=2R=
|0-(-4)|
2
=2
2
解得R=
2
,…(3分)
由圓心C(a,-a)到 x-y=0的距離
|2a|
2
=R=
2
得a=±1,檢驗得a=1…(6分)
∴⊙C的方程為(x-1)2+(y+1)2=2…(7分)
(Ⅱ)由(Ⅰ)知⊙C過原點,因為
OA
OB
,則l經過圓心,…(9分)
直線l的斜率為:2,圓的圓心坐標(1,-1),
所以直線l的方程:2x-y-3=0…(13分)
(注:其它解法請參照給分.)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知⊙C與兩平行直線x-y=0及x-y-4=0都相切,且圓心C在直線x+y=0上,
(Ⅰ)求⊙C的方程;
(Ⅱ)斜率為2的直線l與⊙C相交于A,B兩點,O為坐標原點且滿足
OA
OB
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α以及兩平行直線m、n,則下列命題錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知⊙C與兩平行直線x-y=0及x-y-4=0都相切,且圓心C在直線x+y=0上,
(Ⅰ)求⊙C的方程;
(Ⅱ)斜率為2的直線l與⊙C相交于A,B兩點,O為坐標原點且滿足數(shù)學公式,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年重慶市九校高三(上)聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

已知⊙C與兩平行直線x-y=0及x-y-4=0都相切,且圓心C在直線x+y=0上,
(Ⅰ)求⊙C的方程;
(Ⅱ)斜率為2的直線l與⊙C相交于A,B兩點,O為坐標原點且滿足,求直線l的方程.

查看答案和解析>>

同步練習冊答案