經(jīng)過(guò)點(diǎn)P(2,1)且與曲線f(x)=x3-2x2+1相切的直線l的方程是
 
分析:設(shè)切點(diǎn)為(x0,y0),則y0=x03-2x02+1,由于直線l經(jīng)過(guò)點(diǎn)(1,1),可得切線的斜率,
再根據(jù)導(dǎo)數(shù)的幾何意義求出曲線在點(diǎn)x0處的切線斜率,便可建立關(guān)于x0的方程,從而可求直線l的方程.
解答:解:若經(jīng)過(guò)點(diǎn)P(2,1)且與曲線f(x)=x3-2x2+1相切于點(diǎn)(x0,y0)(x0≠0),
則k=
y0-1
x0-2
=
x03-2x02
x0-2
=x02,
又∵f′(x)=3x2-4x,
∴3x02-4x0=x02
即2x02-4x0=0,
解得x0=0,x0=2,
即k=0或4,
∴過(guò)點(diǎn)P(2,1)且與曲線f(x)=x3-2x2+1相切的直線l的方程為4x-y-7=0或y=1,
故答案為:4x-y-7=0或y=1
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過(guò)某點(diǎn)切線方程的斜率,會(huì)根據(jù)一點(diǎn)坐標(biāo)和斜率寫(xiě)出直線的方程,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的導(dǎo)數(shù)f′(x)=3x2-3ax,f(0)=b.a(chǎn),b為實(shí)數(shù),1<a<2.
(Ⅰ)若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
(Ⅲ)設(shè)函數(shù)F(x)=(f′(x)+6x+1)•e2x,試判斷函數(shù)F(x)的極值點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)點(diǎn)P(-2,1)且與直線2x-y+4=0垂直的直線方程為
x+2y=0
x+2y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,經(jīng)過(guò)點(diǎn)P(
2
,1)且離心率e=
2
2
.過(guò)定點(diǎn)C(-1,0)的直線與橢圓相交于A,B兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)在x軸上是否存在點(diǎn)M,使MA•MB為常數(shù)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•朝陽(yáng)區(qū)二模)已知函數(shù)f(x)=x3-
32
mx2
+n,1<m<2.
(Ⅰ)若f(x)在區(qū)間[-1,1]上的最大值為1,最小值為-2,求m、n的值;
(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實(shí)數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案