在平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),曲線的參數(shù)方程為,(為參數(shù)),試求直線和曲線的普通方程,并求它們的公共點(diǎn)的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)P(x,y)是圓x2+y2=2y上的動(dòng)點(diǎn).
(1)求2x+y的取值范圍;
(2)若x+y+a≥0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系下,曲線的方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線和曲線的交點(diǎn)、,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線(t為參數(shù))經(jīng)過橢圓(為參數(shù))的左焦點(diǎn)F.
(Ⅰ)求m的值;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),求|FA|·|FB|的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù),0 ≤ α < π).以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程為ρcos2θ = 4sinθ.
(1)求直線l與曲線C的平面直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于不同的兩點(diǎn)A、B,若,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線是過點(diǎn),方向向量為的直線。圓方程
(1)求直線l的參數(shù)方程;
(2)設(shè)直線l與圓相交于、兩點(diǎn),求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線經(jīng)過點(diǎn),傾斜角,
(1)寫出直線的參數(shù)方程。
(2)設(shè)與圓相交于兩點(diǎn),求點(diǎn)到兩點(diǎn)的距離之積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知某企業(yè)上半年前5個(gè)月產(chǎn)品廣告投入與利潤額統(tǒng)計(jì)如下:
月份 | 1 | 2 | 3 | 4 | 5 |
廣告投入(x萬元) | 9.5 | 9.3 | 9.1 | 8.9 | 9.7 |
利潤(y萬元) | 92 | 89 | 89 | 87 | 93 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com