【題目】(本小題滿分12分)在△ABC中,角AB,C的對邊分別為a,b,c,C,a5△ABC的面積為10.

1)求bc的值;

2)求cosB)的值.

【答案】1c7;(2

【解析】試題分析:(1)利用三角形面積公式可先求出b,然后利用余弦定理求c;(2)利用(1),用余弦定理求出cosB,再求出sinB,然后用余弦差角公式可求得cosB)的值.

試題解析:(1)由已知,C,a5,因?yàn)?/span>SABCabsinC

,解得b8

由余弦定理得:c2642580cos49,所以c7

2)由(1)有cosB

由于B是銳角三角形的內(nèi)角,故sinB

所以cosB)=cosBcossinBsin

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系 中,曲線C的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線C的極坐標(biāo)方程;
(2)設(shè)點(diǎn)M的極坐標(biāo)為 ,過點(diǎn)M的直線 與曲線C交于A、B兩點(diǎn),若 ,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式|ax﹣2|<3的解集為{x|﹣ <x< },則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的頂點(diǎn),邊上的中線所在直線方程為,的角平分線所在直線方程為

(I)求頂點(diǎn)的坐標(biāo);

(II)求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,

(1)求證:數(shù)列是等比數(shù)列;

(2)求數(shù)列的通項(xiàng)公式;

(3)設(shè),若對任意,有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知向量,設(shè),向量

(1)若,求向量的夾角;

(2)若 對任意實(shí)數(shù)都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖所示的程序框圖

(1)當(dāng)輸入的x為2,﹣1時(shí),分別計(jì)算輸出的y值,并寫出輸出值y關(guān)于輸入值x的函數(shù)關(guān)系式;
(2)當(dāng)輸出的結(jié)果為4時(shí),求輸入的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)如果△ABC的三邊a,b,c滿足b2=ac,且邊b所對角為x,試求x的范圍及此時(shí)函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案