下列函數(shù)中,是對數(shù)函數(shù)的是(  )
①y=lgxa(x>0且x≠1)②y=log2x-1③y=2lg8x④y=log5x.
A、①B、②C、③D、④
考點:對數(shù)函數(shù)的定義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用對數(shù)函數(shù)的定義,判斷即可.
解答: 解:由對數(shù)函數(shù)的定義可知:④y=log5x是對數(shù)函數(shù),其余3個都不是對數(shù)函數(shù).
故選:D.
點評:本題考查對數(shù)函數(shù)的概念,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

到A(2,-3)和直線y=4距離相等的點的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,角A,B,C的對邊分別為a,b,c,且B=60°,2b2=3ac,則角A的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)=
2x-b
2x+1+a
是奇函數(shù);
(1)求函數(shù)f(x)的解析式;
(2)求不等式f(x)>-
3
10
的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x和g(x)=x3的圖象的示意圖如下圖所示.設(shè)兩個函數(shù)的圖象交于點A(x1,y1),B,2,y2)且x1<x2
(1)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,910,11,12},指出a,b的值,并說明理由;
(2)結(jié)合函數(shù)圖象示意圖,請把f(6),g(6),f(2007),g(2007)四個數(shù)按從小到大的順序排列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=1,a2=3,an+2=3an+1-2an
(Ⅰ)證明數(shù)列{ an+1-an}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2(an+1),{bn}的前n項和為Sn,求證
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x2+1
x
(x≠0)各項均為正數(shù)的數(shù)列{an}中a1=1,
1
an+1
=f(an)
,(n∈Nx).
(1)求數(shù)列{an}的通項公式;
(2)在數(shù)列{bn}中,對任意的正整數(shù)n,bn
(3n-1)an2+n
an2
=1都成立,設(shè)Sn為數(shù)列{bn}的前n項和試比較Sn
1
2
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(Ⅰ)當a=0時,f(x)≥h(x)在(1,+∞)上恒成立,求實數(shù)m的取值范圍;
(Ⅱ)是否存在實數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線f(x)=lnx-ax(a∈R)在點(1,f(1))處的切線與直線x-y+1=0垂直,則a=
 

查看答案和解析>>

同步練習(xí)冊答案