已知兩點(diǎn)A(1,-2),B(-4,-2),以下列四條曲線:
①4x+2y=3;
②x2+y2=3;
③x2+2y2=3;
④x2-2y2=3.
其中存在點(diǎn)P,使|PA|=|PB|的曲線有(  )
A、①③B、②④C、①②③D、②③④
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“?a>0,有ea≥1成立”,則¬p為(  )
A、?a≤0,有ea≤1成立B、?a≤0,有ea≥1成立C、?a>0,有ea<1成立D、?a>0,有ea≤1成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l⊥平面α,且l不在平面β內(nèi),則“α⊥β”是“l(fā)∥β”的(  )
A、充分不必要條件B、必要不充分條件C、充要條件D、既不是充分條件,也不是必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線C:
x2
a2
-
y2
b2
=1的右頂點(diǎn)做x軸的垂線,與C的一條漸近線相交于點(diǎn)A,若以C的右焦點(diǎn)為圓心、半徑為4的圓經(jīng)過A,O兩點(diǎn)(O為坐標(biāo)原點(diǎn)),則雙曲線C的方程為(  )
A、
x2
4
-
y2
12
=1
B、
x2
7
-
y2
9
=1
C、
x2
8
-
y2
8
=1
D、
x2
12
-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C的方程y2=4x,O為坐標(biāo)原點(diǎn),P為拋物線的準(zhǔn)線與其對(duì)稱軸的交點(diǎn),過焦點(diǎn)F且垂直于x軸的直線交拋物線于M,N兩點(diǎn),若直線PM與ON相交于點(diǎn)Q,則cos∠MQN=(  )
A、
5
5
B、-
5
5
C、
10
10
D、-
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)和g(x)的導(dǎo)函數(shù)分別為f′(x),g′(x),則下面結(jié)論正確的是( 。
①若f′(x)>g′(x),則函數(shù)f(x)的圖象在函數(shù)g(x)的圖象上方;
②若函數(shù)f′(x)與g′(x)的圖象關(guān)于直線x=a對(duì)稱,則函數(shù)f(x)與g(x)的圖象關(guān)于點(diǎn)(a,0)對(duì)稱;
③函數(shù)f(x)=f(a-x),則f′(x)=-f′(a-x);
④若f′(x)是增函數(shù),則f(
x1+x2
2
)≤
f(x1)+f(x2)
2
A、①②B、①②③
C、③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
4
x4-
4
3
x3+2x2+a在x=x1處取得極值2,則
1
0
a2-t2
dt=(  )
A、π+
3
2
B、π
C、
1
3
π+
3
2
D、
π
3
+
3
2
1
9
π+
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在我市某普通中學(xué)高中生中隨機(jī)抽取200名學(xué)生,得到如下2×2列聯(lián)表:
喜歡數(shù)學(xué)課 不喜歡數(shù)學(xué)課 合計(jì)
30 60 90
20 90 110
合計(jì) 50 150 200
(1)根據(jù)獨(dú)立性檢驗(yàn)的基本思想,約有多大的把握認(rèn)為“性別與喜歡數(shù)學(xué)課之間有關(guān)系”?
(2)若采用分層抽樣的方法從喜歡數(shù)學(xué)課的學(xué)生中隨機(jī)抽取5人,則男生和女生抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從中隨機(jī)抽取2人,求恰有一男一女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在航天員進(jìn)行的一項(xiàng)太空實(shí)驗(yàn)中,先后要實(shí)施6個(gè)程序,其中程序B和C都不與D相鄰,則實(shí)驗(yàn)順序的編排方法共有(  )
A、216種B、288種C、180種D、144種

查看答案和解析>>

同步練習(xí)冊(cè)答案