【題目】如圖,在三棱錐中, , , 為的中點.
(1)求證: ;
(2)設(shè)平面平面, , ,求二面角的平面角的正弦值.
【答案】(1)見解析;(2).
【解析】試題分析:
(1)由題意可得證得平面,然后利用線面垂直的判斷定理即可證得;
(2)由題意建立空間直角坐標(biāo)系,結(jié)合平面的法向量可得面角的平面角的正弦值是.
試題解析:
(1)設(shè)中點為,連接, ,
因為,所以,
又為的中點,
所以.
因為,所以,
因為,所以平面,又平面,
所以
(2)由(1)知,
因為平面平面,平面平面, 平面,
所以平面,又.
以為坐標(biāo)原點,分別以, , 為軸, 軸, 軸的正方向建立空間直角坐標(biāo)系,如圖所示,
因為, , ,所以,
由為中點, , ,得, ,
則, , , , , ,
設(shè)平面的一個法向量為,
由,即取,可得,
因為平面平面,平面平面, 平面,
所以平面,所以平面的一個法向量為,
∴ ,
設(shè)二面角的大小為,則
所以,
∴二面角的平面角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求出圓的直角坐標(biāo)方程;
(2)已知圓與軸相交于, 兩點,直線: 關(guān)于點對稱的直線為.若直線上存在點使得,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)試判斷f (x)的單調(diào)性,并證明你的結(jié)論;
(2)若f (x)為定義域上的奇函數(shù),求函數(shù)f (x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,設(shè)點,且=2.
(1)求橢圓C的方程;
(2)已知四邊形MNPQ的四個頂點均在曲線C上,且MQ∥NP,MQ⊥x軸,若直線MN和直線QP交于點S(4,0).判斷四邊形MNPQ兩條對角線的交點是否為定點?若是,求出定點坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品x(百臺),總成本為C(x)(萬元),其中固定成本為2萬元,每生產(chǎn)1百臺,成本增加1萬元,銷售收入 (萬元),假定該產(chǎn)品產(chǎn)銷平衡.
(1)若要該廠不虧本,產(chǎn)量x應(yīng)控制在什么范圍內(nèi)?
(2)該廠年產(chǎn)多少臺時,可使利潤最大?
(3)求該廠利潤最大時產(chǎn)品的售價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2 ,AD=2,求四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積及體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時,解不等式;
(2)若關(guān)于的方程的解集中恰有一個元素,求的取值范圍;
(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com