【題目】設(shè)拋物線,點
,
,過點
的直線
與
交于
,
兩點.
(1)當與
軸垂直時,求直線
的方程;
(2)證明: .
【答案】(1) y=或
.
(2)見解析.
【解析】分析:(1)首先根據(jù)與
軸垂直,且過點
,求得直線l的方程為x=1,代入拋物線方程求得點M的坐標為
或
,利用兩點式求得直線
的方程;
(2)分直線l與x軸垂直、l與x軸不垂直兩種情況證明,特殊情況比較簡單,也比較直觀,對于一般情況將角相等通過直線的斜率的關(guān)系來體現(xiàn),從而證得結(jié)果.
詳解:(1)當l與x軸垂直時,l的方程為x=2,可得M的坐標為(2,2)或(2,–2).
所以直線BM的方程為y=或
.
(2)當l與x軸垂直時,AB為MN的垂直平分線,所以∠ABM=∠ABN.
當l與x軸不垂直時,設(shè)l的方程為,M(x1,y1),N(x2,y2),則x1>0,x2>0.
由得ky2–2y–4k=0,可知y1+y2=
,y1y2=–4.
直線BM,BN的斜率之和為
.①
將,
及y1+y2,y1y2的表達式代入①式分子,可得
.
所以kBM+kBN=0,可知BM,BN的傾斜角互補,所以∠ABM=∠ABN.
綜上,∠ABM=∠ABN.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后擲一顆質(zhì)地均勻的骰子(骰子的六個面上分別標有1,2,3,4,5,6)兩次,落在水平桌面上后,記正面朝上的點數(shù)分別為,記事件
為“
為偶數(shù)”,事件
為“
中有偶數(shù)且
”,則概率
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為的函數(shù)
,若同時滿足下列條件:
①在
內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間,使
在
上的值域為
;那么把
(
)叫閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間
;
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)判斷函數(shù)是否為閉函數(shù)?若是閉函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=,若對任意給定的m∈(1,+∞),都存在唯一的x0∈R滿足f(f(x0))=2a2m2+am,則正實數(shù)a的取值范圍為( 。
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),曲線
在點
處的切線與直線
垂直,導(dǎo)函數(shù)
的最小值為-12.
(1)求函數(shù)的解析式;
(2)用列表法求函數(shù)在
上的單調(diào)增區(qū)間、極值、最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)=,
(1)求實數(shù)m的值
(2)作出的圖象,并指出當方程
只有一解,a的取值范圍(不必寫過程)
(3)若函數(shù)在區(qū)間
上單調(diào)遞增,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=若函數(shù)f (x)的圖象與直線y=x有三個不同的公共點,則實數(shù)a的取值集合為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com