已知a>0,對于0≤r≤8,r∈N+,式子()8-r()r能化為關(guān)于a的整數(shù)指數(shù)冪的可能情形有幾種?

答案:
解析:

  解:∵()8-r()r,

  ∴是整數(shù).

  ∵0≤r≤8,r∈N+,∴r=0,4,8.

  ∴式子()8-r()r能化為關(guān)于a的整數(shù)指數(shù)冪有3種情形.


提示:

把()8-r()r化為指數(shù)式,再分類討論其指數(shù)為整數(shù)的有哪幾種情形.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)二模)已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標(biāo);若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂必修一數(shù)學(xué)蘇教版 蘇教版 題型:044

已知a>0,對于0≤r≤8,r∈N,式子()8-r·()r能化為關(guān)于a的整數(shù)指數(shù)冪的可能情形有幾種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=6x–6x2,設(shè)函數(shù)g1(x)=f(x), g2(x)=fg1(x)], g3(x)=f g2(x)],…gn(x)=fgn–1(x)],…

(1)求證:如果存在一個實數(shù)x0,滿足g1(x0)=x0,那么對一切n∈N,gn(x0)=x0都成立;

(2)若實數(shù)x0滿足gn(x0)=x0,則稱x0為穩(wěn)定不動點,試求出所有這些穩(wěn)定不動點;

(3)設(shè)區(qū)間A=(–∞,0),對于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=fg1(x)]=f(0)<0,

n≥2時,gn(x)<0  試問是否存在區(qū)間BAB),對于區(qū)間內(nèi)任意實數(shù)x,只要n≥2,都有gn(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:松江區(qū)二模 題型:解答題

已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標(biāo);若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

同步練習(xí)冊答案