【題目】有下列說法:
①一支田徑隊有男女運動員98人,其中男運動員有56人.按男、女比例用分層抽樣的方法,從全體運動員中抽出一個容量為28的樣本,那么應(yīng)抽取女運動員人數(shù)是12人;
②采用系統(tǒng)抽樣法從某班按學(xué)號抽取5名同學(xué)參加活動,學(xué)號為5,27,38,49的同學(xué)均選中,則該班學(xué)生的人數(shù)為60人;
③廢品率x%和每噸生鐵成本y(元)之間的回歸直線方程為 ,這表明廢品率每增加1%,生鐵成本大約增加258元;
④為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名未使用血清和使用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防作用”,利用2×2列聯(lián)表計算得K2的觀測值k≈3.918,經(jīng)查對臨界值表知P(K2≥3.841)≈0.05,由此,得出以下判斷:在犯錯誤的概率不超過0.05的前提下認(rèn)為“這種血清能起到預(yù)防的作用”.
正確的有(
A.①④
B.②③
C.①③
D.②④

【答案】A
【解析】解:①∵田徑隊有男女運動員98人,其中男運動員有56人,
∴這支田徑隊有女運動員98﹣56=42人,
用分層抽樣的方法從該隊的全體運動員中抽取一個容量為28的樣本,
∴每個個體被抽到的概率是 = ,
∵田徑隊有女運動員42人,
∴女運動員要抽取42× =12人,正確;
②采用系統(tǒng)抽樣法從某班按學(xué)號抽取5名同學(xué)參加活動,學(xué)號為5,16,27,38,49的同學(xué)均被選出,則該班學(xué)生人數(shù)可能為55,因此不正確;
③廢品率x%和每噸生鐵成本y(元)之間的回歸直線方程為 ,這表明廢品率每增加1%,生鐵成本每噸大約增加2元,因此不正確;
④為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名未使用血清和使用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防作用”,利用2×2列聯(lián)表計算得K2的觀測值k≈3.918,經(jīng)查對臨界值表知P(K2≥3.841)≈0.05,由此,得出以下判斷:在犯錯誤的概率不超過0.05的前提下認(rèn)為“這種血清能起到預(yù)防的作用”,正確.
故選:A.
【考點精析】認(rèn)真審題,首先需要了解分層抽樣(先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin ﹣4sin2 ,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的區(qū)間[ , ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1)證明:PB∥平面AEC;
(2)已知AP=AB=1,AD= ,求二面角D﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】線段AB外有一點C,∠ABC=60°,AB=200 km,汽車以80 km/h的速度由A向B行駛,同時摩托車以50 km/h的速度由B向C行駛,則運動開始________h后,兩車的距離最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱錐P-ABC,D,E,F(xiàn)分別是棱PA,PB,PC的中點求證平面DEF∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標(biāo)原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E:=1(a>b>0)過點A,離心率為,點F1,F2分別為其左、右焦點.

(1)求橢圓E的標(biāo)準(zhǔn)方程;

(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點P,Q,且?若存在,求出該圓的方程,并求|PQ|的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別為橢圓的左、右焦點,點為橢圓的左頂點,點為橢圓的上頂點,且.

(1)若橢圓的離心率為,求橢圓的方程;

(2)設(shè)為橢圓上一點,且在第一象限內(nèi),直線軸相交于點,若以為直徑的圓經(jīng)過點,證明:點在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)的展開式的各項系數(shù)之和為M,二項式系數(shù)之和為N,M-N=992.

(1)判斷該展開式中有無x2項?若有,求出它的系數(shù);若沒有,說明理由;

(2)求此展開式中有理項的項數(shù).

查看答案和解析>>

同步練習(xí)冊答案