在△ABC中,三個內(nèi)角A,B,C所對的邊分別為a,b,c,若sin2A+sin2C-sin2B=
3
sinAsinC,則B=
 
考點:正弦定理
專題:解三角形
分析:由條件利用正弦定理可得a2+c2-b2=
3
ac,由此求得cosB=
a2+c2-b2
2ac
 的值,可得B的值.
解答: 解:在△ABC中,∵sin2A+sin2C-sin2B=
3
sinAsinC,
∴利用正弦定理得:a2+c2-b2=
3
ac,
∴cosB=
a2+c2-b2
2ac
=
3
2
,
∴B=
π
6

故答案為:
π
6
點評:本題主要考查正弦定理和余弦定理的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若點A(1,2)是拋物線C:y2=2px(p>0)上一點,經(jīng)過點B(5,-2)的直線l與拋物線C交于P,Q兩點.
(Ⅰ)求證:
PA
QA
為定值;
(Ⅱ)若△APQ的面積為16
2
,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
lnx
x
,x>6
e-x(x3+3x2+ax+b),x≤6
,其中a,b∈R,e為自然對數(shù)的底數(shù).
(Ⅰ)當a=b=-3時,函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當x≤6時,若函數(shù)h(x)=f(x)-e-x(x3+b-1)存在兩個相距大于2的極值點,求實數(shù)a的取值范圍;
(Ⅲ)若函數(shù)g(x)與函數(shù)f(x)的圖象關于y軸對稱,且函數(shù)g(x)在點(-6,m),(2,n)單調(diào)遞減,在(m,2),(n,+∞)單調(diào)遞增,試證明:f(n-m)
5
6
36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sin
x
2
cos
x
2
+cos2
x
2
+m的圖象過點(
6
,0).
(Ⅰ)求實數(shù)m值以及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設y=f(x)的圖象與x軸、y軸及直線x=t(0<t<
3
)所圍成的曲邊四邊形面積為S,求S關于t的函數(shù)S(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

據(jù)調(diào)查統(tǒng)計,通過這兩條公路從城市甲到城市乙的200輛汽車所用時間的頻數(shù)分布如下表.
(Ⅰ)為進行某項研究,從所用時間為12天的60輛汽車中隨機抽取6輛.
(i)若用分層抽樣的方法抽取,求從通過公路1和公路2的汽車中各抽取幾輛;
(ii)若從(i)的條件下抽取的6輛汽車中,再任意抽取兩輛汽車,求這兩輛汽車至少有一輛通過公路1的概率.
所用的時間(天) 10 11 12 13
通過公路1的頻數(shù) 20 40 20 20
通過公路2的頻數(shù) 10 40 40 10
(Ⅱ)假設汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā).為了盡最大可能在各自允許的時間內(nèi)將貨物運往城市乙,估計汽車A和汽車B應如何選擇各自的路徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在邊長為3的正方形ABCD中,有一束光線從P點射出,到Q點反射,AP=1,BQ=1,之后會不斷地被正方形的各邊反射,當光線又回到點P時,
(1)光線被正方形各邊一共反射了
 
次;
(2)光線所走的總路程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直二面角α-l-β,A∈α,B∈β,A,B兩點均不在直線l上,又直線AB與l成30°角,且線段AB=8,則線段AB的中點M到l的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(x+3)≥6;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f(
b
a
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖的程序圖中,輸出結果是
 

查看答案和解析>>

同步練習冊答案