(1)求證:MNPQ是平行四邊形.
(2)若AC=BD,能截得菱形嗎,如何截?
(3)在什么情況下,可以截得一個矩形?
(4)在什么情況下,能截得一個正方形呢,如何截?
(5)若AC=BD=a,求證:平行四邊形MNPQ的周長一定.
思路解析:本題以線面、面面的平行為載體,用它來解決相關(guān)的問題.對于(1)可用兩組對邊分別平行來證明MNPQ是平行四邊形;再由比例的性質(zhì)證得結(jié)論(2);當(dāng)對棱垂直時,由空間等角的關(guān)系,可見四邊形MNPQ的一個角是直角,從而得到結(jié)論(3);對于結(jié)論(4),只要滿足既是菱形又是矩形的要求即可;對于最后的第(5)問,只要注意△AMQ∽△ABD,就可把平行四邊形MNPQ的周長表示出來,從而確定它是否是與a有關(guān)的定值.
(1)證明:∵AC∥平面MNPQ,且平面ADC∩平面MNPQ=PQ,且AC?平面ADC,
∴AC∥PQ.
同理,可證AC∥MN,BD∥MQ,BD∥NP.
∴PQ∥MN,MQ∥NP.
∴四邊形MNPQ為一平行四邊形.
(2)解:由(1)得 ①
由MQ∥BD,得 ②
又AC=BD,
①÷②,得當(dāng)DQ=AQ時,
PQ=MQ.
又四邊形MNPQ為平行四邊形,
∴MNPQ為菱形,即當(dāng)Q取AD中點時可截得菱形.
(3)解:顯然,當(dāng)AC⊥BD時,MN⊥NP,即四邊形MNPQ為矩形.
(4)解:由(2)和(3)可知,當(dāng)AC=BD且AC⊥BD,并且Q為AD的中點時,四邊形MNPQ為一正方形.
(5)證明:設(shè)MQ=x,PQ=y,Q為AD上一點,且AQ∶QD=m∶n,
∵△AMQ∽△ABD,∴且BD=a.
∴x=MQ=a.
同理,可得y=PQ=a.∴x+y=a+a=a.
∴周長為2(x+y)=2a,
即當(dāng)AC=BD=a時,平行四邊形MNPQ的周長為定值2a.
方法歸納 本小題是一道典型的發(fā)散性思維題,其中綜合了幾何中的多個知識點,特別是線面平行和線線平行.正確理解相關(guān)平面圖形的定義是解答本題的關(guān)鍵.通過引入了參數(shù)可建立相關(guān)量間的關(guān)系式,消去參數(shù)后即得所求結(jié)果.
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
已知正四面體P-ABC的棱長為4,用一平行于底面的平面截此四面體,所得截面面積為,求截面與底面之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com