【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當m>0時,若對于區(qū)間[1,2]上的任意兩個實數(shù)x1,x2,且x1<x2,都有,成立,求m的最大值.

【答案】(1)見解析 (2).

【解析】

1)先求導,再分類討論,根據(jù)導數(shù)和函數(shù)的單調(diào)性的關系即可解決,(2)根據(jù)題意可得fx2-x22)<fx1-x12,構(gòu)造函數(shù),再求導,再分離參數(shù),利用導數(shù)求出函數(shù)的最值即可.

(1)f(x)的定義域是(0,+∞), f′(x)=x+m+=

m≥0時,f′(x)>0, 故m≥0時,f(x)在(0,+∞)遞增;

m<0時,方程x2+mx+m=0的判別式為: △=m2-4m>0,

令f′(x)>0,解得:x>,

令f′(x)<0,解得:0<x< ,

故m<0時,f(x)在(,+∞)遞增,在(0,)遞減;

(2)由(1)知,當m>0時,函數(shù)f(x)在(0,+∞)遞增,

又[1,2](0,+∞),故f(x)在[1,2]遞增;

對任意x1<x2,都有f(x1)<f(x2), 故f(x2)-f(x1)>0,

由題意得:f(x2)-f(x1)<, 整理得:f(x2)-<f(x1)-,

令F(x)=f(x)-x2=-x2+mx+mlnx, 則F(x)在[1,2]遞減, 故F′(x)=,

當x∈[1,2]時,-x2+mx+m≤0恒成立,即m≤,

令h(x)=,則h′(x)>0, 故h(x)在[1,2]遞增,

故h(x)∈[], 故m≤

實數(shù)的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]

(1)當a=1時,求函數(shù)f(x)的值域;

(2)若f(x)≤-alnx+4恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知函數(shù),其中,求函數(shù)的圖象恰好經(jīng)過第一、二、三象限的概率;

(2)某校早上8:10開始上課,假設該校學生小張與小王在早上7:30~8:00之間到校,且每人到該時間段內(nèi)到校時刻是等可能的,求兩人到校時刻相差10分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若平面直角坐標系內(nèi)兩點P,Q滿足條件:①P,Q都在函數(shù)f(x)的圖象上;②P,Q關于原點對稱,則稱點對(P,Q)是函數(shù)f(x)的圖象上的一個友好點對”(點對(P,Q)與點對(Q,P)看作同一個友好點對”).已知函數(shù),若此函數(shù)的友好點對有且只有一對,則實數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題在區(qū)間上是減函數(shù);

命題q:不等式無解。

若命題“”為真,命題“”為假,求實數(shù)m 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合的元素個數(shù)為個且元素為正整數(shù),將集合分成元素個數(shù)相同且兩兩沒有公共元素的三個集合,即,,,其中,,若集合中的元素滿足,,,則稱集合完美集合例如:“完美集合,此時.若集合,為完美集合”,的所有可能取值之和為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當m=1時,若方程在區(qū)間上有唯一的實數(shù)解,求實數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程為,傾斜角為的直線過點.

(1)求曲線的直角坐標方程和直線的參數(shù)方程;

(2)設,是過點且關于直線對稱的兩條直線,交于兩點,交于, 兩點. 求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為,對任意、都有,當時,,.

1)求;

2)證明:上單調(diào)遞減;

3)解不等式:.

查看答案和解析>>

同步練習冊答案