已知一個(gè)四棱錐P-ABCD的三視圖(正視圖與側(cè)視圖為直角三角形,俯視圖是帶有一條對(duì)角形的正方形)如下,E是側(cè)棱PC上的動(dòng)點(diǎn).
(1)求四棱錐P-ABCD的體積;
(2)是否不論點(diǎn)E在何位置都有BD⊥AE,證明你的結(jié)論.
精英家教網(wǎng)
分析:(1)根據(jù)三視圖可知PC⊥面ABCD,從而得到四棱錐P-ABCD的高為PC,底面ABCD是正方形,然后根據(jù)四棱錐P-ABCD的體積公式進(jìn)行求解即可.
(2)是,在任何位置都有BD⊥AE,可證明BD⊥面PAC,根據(jù)直線與平面垂直的判定定理可知只需證BD與面PAC內(nèi)兩相交直線垂直,連接AC,則AC⊥BD,PC⊥BD且PC交AC于C點(diǎn),滿足定理所需條件,而E是PC上的動(dòng)點(diǎn),所以AE在平面PAC內(nèi),從而得到結(jié)論.
解答:解:(1)由三視圖可知,PC⊥面ABCD,且PC=2,
底面ABCD是正方形,故體積Vp-ABCD=
1
3
×2×1×1=
2
3
;(6分)
(2)是,在任何位置都有BD⊥AE,理由如下:(8分)
連接AC,則AC⊥BD,PC⊥BD且PC交AC于C點(diǎn),故BD⊥面PAC,
因?yàn)镋是PC上的動(dòng)點(diǎn),所以AE在平面PAC內(nèi),所以BD⊥AE不論E在何位置都正確.(12分)
點(diǎn)評(píng):本題主要考查了三視圖與立體圖形的轉(zhuǎn)化,以及體積的求解和直線與平面垂直的性質(zhì),同時(shí)考查了轉(zhuǎn)化與劃歸的數(shù)學(xué)思想、計(jì)算與推理能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分別是PA、PB、BC的中點(diǎn).
(1)求證:EF⊥平面PAD;
(2)求平面EFG與平面ABCD所成銳二面角的大;
(3)若M為線段AB上靠近A的一個(gè)動(dòng)點(diǎn),問(wèn)當(dāng)AM長(zhǎng)度等于多少時(shí),直線MF與平面EFG所成角的正弦值等于
15
5
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四棱錐P-ABCD的四條側(cè)棱,底面四條邊及兩條對(duì)角線共10條線段,現(xiàn)有一只螞蟻沿著這10條線段從一個(gè)頂點(diǎn)爬行到另一個(gè)頂點(diǎn),規(guī)定:(1)從一個(gè)頂點(diǎn)爬行到另一個(gè)頂點(diǎn)視為一次爬行;(2)從任一頂點(diǎn)向另4個(gè)頂點(diǎn)爬行是等可能的(若螞蟻爬行在底面對(duì)角線上時(shí)仍按原方向直行).則螞蟻從頂點(diǎn)P開(kāi)始爬行4次后恰好回到頂點(diǎn)P的概率是( 。
A、
1
16
B、
9
16
C、
9
64
D、
13
64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省景德鎮(zhèn)市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知正四棱錐P—ABCD的四條側(cè)棱,底面四條邊及兩條對(duì)角線共10條線段,現(xiàn)有一只螞蟻沿著這10條線段從一個(gè)頂點(diǎn)爬行到另一個(gè)頂點(diǎn),規(guī)定: (1)從一個(gè)頂點(diǎn)爬行到另一個(gè)頂點(diǎn)視為一次爬行;(2)從任一頂點(diǎn)向另4個(gè)頂點(diǎn)爬行是等可能的(若螞蟻爬行在底面對(duì)角線上時(shí)仍按原方向直行). 則螞蟻從頂點(diǎn)P開(kāi)始爬行4次后恰好回到頂點(diǎn)P的概率是(  )                                 

A.              B.              C.             D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省溫州市甌海中學(xué)高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分別是PA、PB、BC的中點(diǎn).
(1)求證:EF⊥平面PAD;
(2)求平面EFG與平面ABCD所成銳二面角的大;
(3)若M為線段AB上靠近A的一個(gè)動(dòng)點(diǎn),問(wèn)當(dāng)AM長(zhǎng)度等于多少時(shí),直線MF與平面EFG所成角的正弦值等于?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年遼寧省丹東市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分別是PA、PB、BC的中點(diǎn).
(1)求證:EF⊥平面PAD;
(2)求平面EFG與平面ABCD所成銳二面角的大。
(3)若M為線段AB上靠近A的一個(gè)動(dòng)點(diǎn),問(wèn)當(dāng)AM長(zhǎng)度等于多少時(shí),直線MF與平面EFG所成角的正弦值等于?

查看答案和解析>>

同步練習(xí)冊(cè)答案