有一個(gè)正四面體,它的棱長(zhǎng)為a,現(xiàn)用一張圓型的包裝紙將其完全包。ú荒懿眉艏垼梢哉郫B),那么包裝紙的最小半徑為         

試題分析:本題轉(zhuǎn)化為四面體的側(cè)面展開(kāi)問(wèn)題.在解答時(shí),首先要將四面體的三個(gè)側(cè)面沿底面展開(kāi),觀察展開(kāi)的圖形易知包裝紙的對(duì)角線處在什么位置時(shí),包裝紙面積最小,進(jìn)而獲得問(wèn)題的解答.
由題意,將正四面體沿底面將側(cè)面都展開(kāi),如圖所示:
設(shè)底面正三角形的中心為O,不難得到當(dāng)以SO為圓的半徑時(shí),
所需包裝紙的半徑最小,
此時(shí)SO==,
故答案為:

點(diǎn)評(píng):本題考查的是棱錐的結(jié)構(gòu)特征、四面體的側(cè)面展開(kāi)問(wèn)題.在解答的過(guò)程當(dāng)中充分體現(xiàn)了側(cè)面展開(kāi)的處理問(wèn)題方法、圖形的觀察和分析能力以及問(wèn)題轉(zhuǎn)化的思想.值得同學(xué)們體會(huì)反思.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱柱的所有棱長(zhǎng)都為,且平面中點(diǎn).

(Ⅰ)求證:;
(Ⅱ)求二面角的大小的余弦值;
(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在正四棱柱中,分別是的中點(diǎn),的中點(diǎn),點(diǎn)在四邊形上或其內(nèi)部運(yùn)動(dòng),且使,對(duì)于下列命題:①點(diǎn)可以與點(diǎn)重合;②點(diǎn)可以與點(diǎn)重合;③點(diǎn)可以在線段上;④點(diǎn)可以與點(diǎn)重合.
其中正確命題的序號(hào)是            (把你認(rèn)為正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方體的棱長(zhǎng)為1,的中點(diǎn),為線段上的動(dòng)點(diǎn),過(guò)點(diǎn)的平面截該正方體所得的截面記為,則下列命題正確的是         (寫(xiě)出所有正確命題的編號(hào))。

①當(dāng)時(shí),為四邊形
②當(dāng)時(shí),為等腰梯形
③當(dāng)時(shí),的交點(diǎn)滿(mǎn)足
④當(dāng)時(shí),為六邊形
⑤當(dāng)時(shí),的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則下列四個(gè)命題中,正確命題的個(gè)數(shù)是(   )
①若   ②若
③若  ④若
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為兩條直線,為兩個(gè)平面,下列說(shuō)法正確的是(  )
A.若,則
B.若
C.
D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知空間四邊形中,,的中點(diǎn).

(Ⅰ)求證:平面CDE;
(Ⅱ)若G為的重心,試在線段AE上確定一點(diǎn)F,使得GF//平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱錐中,的中點(diǎn),,,二面角的大小為

(1)證明:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知的二面角,點(diǎn)A,C為垂足,,BD,D為垂足,若AC=BD=DC=1則AB與面所成角的正弦值為_(kāi)_________

查看答案和解析>>

同步練習(xí)冊(cè)答案