已知p:|4x-1|≤1,q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要而不充分條件,求實(shí)數(shù)a的取值范圍.
考點(diǎn):必要條件、充分條件與充要條件的判斷,復(fù)合命題的真假
專題:簡易邏輯
分析:根據(jù)不等式的解法求出命題的等價(jià)條件,利用逆否命題的等價(jià)性結(jié)合充分條件和必要條件的定義進(jìn)行求解即可.
解答: 解:由|4x-1|≤1得0≤x≤
1
2

由x2-(2a+1)x+a(a+1)≤0得[x-(a+1)](x-a)≤0,
即a≤x≤a+1,
若¬p是¬q的必要而不充分條件,
則q是p的必要而不充分條件,
a≤0
a+1≥
1
2
,即
a≤0
a≥-
1
2
,
-
1
2
≤a≤0.
點(diǎn)評:本題主要考查充分條件和必要條件的應(yīng)用,根據(jù)逆否命題的等價(jià)性是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,a17=66,通項(xiàng)公式是項(xiàng)數(shù)n的一次函數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)88是否是數(shù)列{an}中的項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=logax(a>0且a≠1),若數(shù)列:2,f(a1),f(a2),…,f(an),2n+4(n∈N*)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)an;
(2)若a=2,令bn=an•f(an),對任意n∈N*,都有bn>f-1(t),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:(
4
9
 
1
2
-lg5+|lg2-1|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,則“2a+2b=2a+b”是“a+b≥2”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{bn}為等比數(shù)列,公比為q,數(shù)列滿足
b1q+b1q3=90
b1+b1q2=30
,求b1和q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知指數(shù)函數(shù)y=f(x)和冪函數(shù)y=g(x)的圖象都過P(
1
2
,2),如果f(x1)=g(x2)=4,那么x1+x2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α頂點(diǎn)在坐標(biāo)原點(diǎn),始邊為x軸非負(fù)半軸,終邊經(jīng)過點(diǎn)P(-3,4).
(1)求sinα,tanα的值;
(2)若f(x)=
sin(
π
2
+x)+sin(-π-x)
cos(
2
-x)+sin(
2
+x)
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
cos(2π-α)sin(3π+α)cos(
2
-α)
cos(-
π
2
+α)cos(α-3π)sin(-π-α)

查看答案和解析>>

同步練習(xí)冊答案