(本題滿分12分)已知函數(shù)
(1)若的單調(diào)區(qū)間;
(2)若函數(shù)存在極值,且所有極值之和大于,求a的取值范圍。
(1)的遞減區(qū)間是,無遞增區(qū)間;(2).
【解析】
試題分析:(1)函數(shù)的定義域為
時對恒成立,所以的遞減區(qū)間是,無遞增區(qū)間
(2)
因為存在極值,所以在上有根即方程
在上有根.
記方程的兩根為由韋達定理,所以方程的根必為兩不等正根。
所以滿足方程判別式大于零
故所求取值范圍為
考點:本題主要考查應用導數(shù)研究函數(shù)的單調(diào)性及極值。
點評:典型題,本題屬于導數(shù)應用中的基本問題,(2)通過研究函數(shù)的極值情況,確定得到含a的方程,利用方程有解,求得取值范圍。涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。
科目:高中數(shù)學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源:安徽省合肥一中、六中、一六八中學2010-2011學年高二下學期期末聯(lián)考數(shù)學(理 題型:解答題
(本題滿分12分)已知△的三個內(nèi)角、、所對的邊分別為、、.,且.(1)求的大;(2)若.求.
查看答案和解析>>
科目:高中數(shù)學 來源:2011屆本溪縣高二暑期補課階段考試數(shù)學卷 題型:解答題
(本題滿分12分)已知各項均為正數(shù)的數(shù)列,
的等比中項。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項和為Tn,求Tn。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年廣東省揭陽市高三調(diào)研檢測數(shù)學理卷 題型:解答題
(本題滿分12分)
已知橢圓:的長軸長是短軸長的倍,,是它的左,右焦點.
(1)若,且,,求、的坐標;
(2)在(1)的條件下,過動點作以為圓心、以1為半徑的圓的切線(是切點),且使,求動點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年遼寧省高二上學期10月月考理科數(shù)學卷 題型:解答題
(本題滿分12分)已知橢圓的長軸,短軸端點分別是A,B,從橢圓上一點M向x軸作垂線,恰好通過橢圓的左焦點,向量與是共線向量
(1)求橢圓的離心率
(2)設(shè)Q是橢圓上任意一點,分別是左右焦點,求的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com