已知公差為d(d>1)的等差數(shù)列{an}和公比為q(q>1)的等比數(shù)列{bn},滿足集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5}
(1)求通項an,bn
(2)求數(shù)列{anbn}的前n項和Sn;
(3)若恰有4個正整數(shù)n使不等式
2an+p
an
bn+1+p+8
bn
成立,求正整數(shù)p的值.
(1)∵1,2,3,4,5這5個數(shù)中成公差大于1的等差數(shù)列的三個數(shù)只能是1,3,5;
成公比大于1的等比數(shù)列的三個數(shù)只能是1,2,4
而{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5},
∴a3=1,a4=3,a5=5,b3=1,b4=2,b5=4
a1=-3,d=2,b1=
1
4
,q=2

∴an=a1+(n-1)d=2n-5,bn=b1×qn-1=2n-3

(2)∵anbn=(2n-5)×2n-3
∴Sn=(-3)×2-2+(-1)×2-1+1×20++(2n-5)×2n-3
2Sn=
&(-3)×2-1+(-1)×20++(2n-7)×2n-3+(2n-5)×2n-2

兩式相減得-Sn=(-3)×2-2+2×2-1+2×20++2×2n-3-(2n-5)×2n-2
=-
3
4
-1+2n-1-(2n-5)×2n-2

Sn=
7
4
+(2n-7)×2n-2


(3)不等式
2an+p
an
bn+1+p+8
bn
等價于
2[2(n+p)-5]
2n-5
2n-2+p+8
2n-3

4p
2n-5
p+8
2n-3
,
∵p>0,∴n=1,2顯然成立
當(dāng)n≥3時,有
4p
p+8
2n-5
2n-3
,
p≤
8(2n-5)
2n-1-2n+5
=
8
2n-1
2n-5
-1

設(shè)cn=
2n-1
2n-5
,由
cn+1
cn
=
2(2n-5)
2n-3
>1
,得n>3.5
∴當(dāng)n≥4時,{cn}單調(diào)遞增,
{
8(2n-5)
2n-1-2n+5
}
單調(diào)遞減
而當(dāng)n=3時,p≤2
2
3
;
當(dāng)n=4時,p≤4
4
5

當(dāng)n=5時,p≤3
7
11
;
當(dāng)n=6時,p≤2
6
25
;
∴恰有4個正整數(shù)n使不等式
2an+p
an
bn+1+p+8
bn
成立的正整數(shù)p值為3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知公差為d(d>1)的等差數(shù)列{an}和公比為q(q>1)的等比數(shù)列{bn},
滿足集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5}
(1)求通項an,bn;
(2)求數(shù)列{an•bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差為d(d>1)的等差數(shù)列{an}和公比為q(q>1)的等比數(shù)列{bn},滿足集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5}
(1)求通項an,bn;
(2)求數(shù)列{anbn}的前n項和Sn
(3)若恰有4個正整數(shù)n使不等式
2an+p
an
bn+1+p+8
bn
成立,求正整數(shù)p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省鎮(zhèn)江實驗高級中學(xué)高考數(shù)學(xué)模擬試卷(9)(解析版) 題型:解答題

已知公差為d(d>1)的等差數(shù)列{an}和公比為q(q>1)的等比數(shù)列{bn},
滿足集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5}
(1)求通項an,bn;
(2)求數(shù)列{an•bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省無錫市江陰市成化高級中學(xué)高考數(shù)學(xué)模擬試卷(18)(解析版) 題型:解答題

已知公差為d(d>1)的等差數(shù)列{an}和公比為q(q>1)的等比數(shù)列{bn},滿足集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5}
(1)求通項an,bn;
(2)求數(shù)列{anbn}的前n項和Sn
(3)若恰有4個正整數(shù)n使不等式成立,求正整數(shù)p的值.

查看答案和解析>>

同步練習(xí)冊答案