【題目】已知三棱錐P﹣ABC的各頂點都在同一球的面上,且PA⊥平面ABC,若球O的體積為 (球的體積公式為 R3 , 其中R為球的半徑),AB=2,AC=1,∠BAC=60°,則三棱錐P﹣ABC的體積為(
A.
B.
C.
D.

【答案】B
【解析】解:如圖所示,在△ABC中,AB=2,AC=1,∠BAC=60°,則BC2=22+12﹣2×1×2×cos60°=3, 解得BC= ,∴
∴∠ACB=90°.
取AB的中點D,則球心O滿足OD⊥平面ABC.
又PA⊥平面ABC,∴三棱錐P﹣ABC的外接球的球心O為PB的中點.
∴OD= PA.
由球的體積計算公式可得: R3= ,解得R=
∴OD= =2.
∴PA=4
∴三棱錐P﹣ABC的體積V= PA= =
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊥平面BCD,BC⊥CD,AD與平面BCD所成的角為30°,且AB=BC=2;
(1)求三棱錐A﹣BCD的體積;
(2)設(shè)M為BD的中點,求異面直線AD與CM所成角的大小(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域是(0, ),f′(x)是它的導(dǎo)函數(shù),且f(x)+tanxf′(x)>0在定義域內(nèi)恒成立,則(
A.f( )> f(
B. sin1?f(1)>f(
C.f( )> f(
D. f( )> f(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 ,(α為參數(shù)),以原點O為極點,x軸的非負半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)P為曲線C上一點,Q為直線l上一點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F(xiàn)分別為BC,AD的中點,點M在線段PD上.
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的值域為.

1)判斷此函數(shù)的奇偶性,并說明理由;

2)判斷此函數(shù)在的單調(diào)性,并用單調(diào)性的定義證明你的結(jié)論;

3)求出上的最小值,并求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù)a,b,c滿足a,b,c∈R+
(Ⅰ)若ab=1,證明:( + 2≥4;
(Ⅱ)若a+b+c=3,且 + + ≤|2x﹣1|﹣|x﹣2|+3恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是(

A.命題“若,則”為假命題

B.命題“若,則”的否命題為假命題

C.命題“若,則方程有實根”的逆命題為真命題

D.命題“若,則”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位,已知直線l的參數(shù)方程為 (t為參數(shù),0<φ<π),曲線C的極坐標(biāo)方程為ρcos2θ=8sinθ.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A、B兩點,當(dāng)φ變化時,求|AB|的最小值.

查看答案和解析>>

同步練習(xí)冊答案