已知條件p;x∈A={x|x-a|≤4,x∈R,a∈R},條件q:x∈B={x|
6
x+1
<1}
(I)若A∩B=(5,7],求實數(shù)a的值;
(II )若p是g的充分不必要條件,求實數(shù)a的取值范圍.
由|x-a|≤4可得-4≤x-a≤4,
解得a-4≤x≤a+4,
即A={x|a-4≤x≤a+4}. …(2分)
6
x+1
<1
可變形為
5-x
x+1
<0
,等價于(x+1)(x-5)>0,解得x<-1或x>5,
即B={x|x<-1或x>5}. …(4分)
(Ⅰ)由A∩B=(5,7)知a+4=7
∴a=3  …(7分)
(Ⅱ)∵p是q的充分不必要條件,
∴a+4<-1,或a-4>5,…(10分)
解得a<-5或a>9.  …(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知條件p:x∈A={x|x2-2ax+a2-1≤0},q:x∈B={x||2x-3|≤7},若條件p是q的充分但不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•綿陽一模)已知條件p;x∈A={x|x-a|≤4,x∈R,a∈R},條件q:x∈B={x|
6x+1
<1}
(I)若A∩B=(5,7],求實數(shù)a的值;
(II )若p是g的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知條件p:x∈A={x|x2-2ax+a2-1≤0},q:x∈B={x||2x-3|≤7},若條件p是q的充分但不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年重慶市渝中區(qū)巴蜀中學高一(上)期中數(shù)學試卷(解析版) 題型:解答題

已知條件p:x∈A={x|x2-2ax+a2-1≤0},q:x∈B={x||2x-3|≤7},若條件p是q的充分但不必要條件,求a的取值范圍.

查看答案和解析>>

同步練習冊答案