已知中心在坐標原點,焦點在軸上的橢圓過點,且它的離心率.

(Ⅰ)求橢圓的標準方程;
(Ⅱ)與圓相切的直線交橢圓于兩點,若橢圓上一點滿足,求實數(shù)的取值范圍.

(1) (2)

解析試題分析:解:(Ⅰ) 設(shè)橢圓的標準方程為  1分
由已知得: 解得 ┈ 4分
所以橢圓的標準方程為:       5分
(Ⅱ) 因為直線與圓相切
所以,       6分
代入并整理得: ┈7分
設(shè),則有 
     8分
因為,, 所以,┈┈ 9分
又因為點在橢圓上, 所以,   10分
                      12分
因為    所以                  13分
所以 ,所以 的取值范圍為       14分
考點:橢圓的方程,直線與橢圓位置關(guān)系
點評:解決的關(guān)鍵是利用幾何性質(zhì)得到a,b,c的關(guān)系式求解方程,同時能聯(lián)立方程組來得到根的關(guān)系,結(jié)合向量的坐標得到求解,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,F1F2是離心率為的橢圓C(ab>0)的左、右焦點,直線x=-將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是橢圓C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

圓C的圓心在y軸上,且與兩直線l1;l2均相切.
(I)求圓C的方程;
(II)過拋物線上一點M,作圓C的一條切線ME,切點為E,且的最小值為4,求此拋物線準線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為
(1)求曲線C的普通方程;
(2)設(shè)點Q是曲線C上的一個動點,求它到直線L的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓相交于兩點,設(shè)為橢圓上一點,且滿足(其中為坐標原點),求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的曲線是由部分拋物線和曲線“合成”的,直線與曲線相切于點,與曲線相切于點,記點的橫坐標為,其中

(1)當時,求的值和點的坐標;
(2)當實數(shù)取何值時,?并求出此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)設(shè)圓C:,此圓與拋物線有四個不同的交點,若在軸上方的兩交點分別為,,坐標原點為,的面積為。
(1)求實數(shù)的取值范圍;
(2)求關(guān)于的函數(shù)的表達式及的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖,設(shè)點、分別是橢圓的左、右焦點,為橢圓上任意一點,且最小值為

(1)求橢圓的方程;
(2)若動直線均與橢圓相切,且,試探究在軸上是否存在定點,點的距離之積恒為1?若存在,請求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,已知拋物線的焦點為.過點的直線交拋物線于,兩點,直線,分別與拋物線交于點,

(Ⅰ)求的值;
(Ⅱ)記直線的斜率為,直線的斜率為.證明:為定值.

查看答案和解析>>

同步練習(xí)冊答案