設(shè)曲線y=和曲線y=在它們的交點(diǎn)處的兩切線的夾角為α,求tanα的值.

答案:
解析:

  解:聯(lián)立兩曲線方程解得兩曲線交點(diǎn)為(1,1).

  設(shè)兩曲線在交點(diǎn)處的切線斜率分別為k1、k2,則

  ∴k1=(|x=1|x=1=-2,k2=(|x=1|x=1=-1.

  由兩直線夾角公式:tanα=||=||=

  分析:要求兩切線的夾角,關(guān)鍵是確定在兩曲線交點(diǎn)處的切線的斜率.根據(jù)導(dǎo)數(shù)的幾何意義,只需先求出兩曲線在交點(diǎn)處的導(dǎo)數(shù),再應(yīng)用兩直線夾角公式求出夾角即可.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:044

設(shè)曲線y=和曲線y=在它們的交點(diǎn)處的兩切線的夾角為α,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)-1-1蘇教版 蘇教版 題型:044

設(shè)曲線y=和曲線y=在它們的交點(diǎn)處的兩切線的夾角為α,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:選修設(shè)計(jì)同步數(shù)學(xué)人教A(2-2) 人教版 題型:044

設(shè)曲線y和曲線y在它們的交點(diǎn)處兩切線的夾角為α,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時(shí)恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習(xí)冊答案