計算:log3
427
3
+lg25+2lg2+eln2=
 
分析:先利用對數(shù)的運算法則進行計算,把log3
427
3
化為分數(shù)指數(shù)冪的形式,根據(jù)對數(shù)的運算法則即可求得其值,對lg25+2lg2化簡后提取公因式后利用lg5+lg2=1進行計算即可.
解答:解:log3
427
3
+lg25+2lg2+eln2=log33-
1
4
+2lg5+2lg2+2
=-
1
4
+2(lg2+lg5)+2
=-
1
4
+2+2=
15
4

故答案為:
15
4
點評:本小題主要考查對數(shù)的運算性質、對數(shù)的運算性質的應用等基礎知識,考查運算求解能力、化歸思想.屬于基礎題.對數(shù)的運算性質:loga(MN)=logaM+logaN; loga
M
N
=logaM-logaN;logaMn=nlogaM等.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

計算:
(Ⅰ)sin
25π
6
+cos
26π
3
+tan(-
25π
4
)

(Ⅱ)7log72-(2013)0-(3
3
8
)-
2
3
-log3
427

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

計算:
(Ⅰ)sin
25π
6
+cos
26π
3
+tan(-
25π
4
)

(Ⅱ)7log72-(2013)0-(3
3
8
)-
2
3
-log3
427

查看答案和解析>>

同步練習冊答案