【題目】某公司試銷某種“上海世博會(huì)”紀(jì)念品,每件按30元銷售,可獲利50%,設(shè)每件紀(jì)念品的成本為a元.
(1)試求a的值;
(2)公司在試銷過(guò)程中進(jìn)行了市場(chǎng)調(diào)查,發(fā)現(xiàn)銷售量y(件)與每件售價(jià)x(元)滿足關(guān)系y=-10x+800.設(shè)每天銷售利潤(rùn)為W(元),求每天銷售利潤(rùn)W(元)與每件售價(jià)x(元)之間的函數(shù)解析式;當(dāng)每件售價(jià)為多少時(shí),每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
【答案】(1) a=20;(2)詳見解析.
【解析】試題分析:(1) 每件按30元銷售,可獲利50%,成本為a元,則a(1+50%)=30,解出a值即可;(2) 每天銷售利潤(rùn)=銷售量 (每件售價(jià)-成本) ,寫出每天銷售利潤(rùn)W(元)與每件售價(jià)x(元)之間的函數(shù)解析式,化簡(jiǎn)得到二次函數(shù),用配方法求出最值.
試題解析:
(1)∵按30元銷售,可獲利50%,∴a(1+50%)=30,解得a=20.
(2)∵銷售量y(件)與每件售價(jià)x(元)滿足關(guān)系y=-10x+800,則每天銷售利潤(rùn)W(元)與每件售價(jià)x(元)滿足W=(-10x+800)(x-20)=-10x2+1 000x+16 000=-10(x-50)2+9 000,
故當(dāng)x=50時(shí),W取最大值9 000,
即每件售價(jià)為50元時(shí),每天獲得的利潤(rùn)最大,最大利潤(rùn)是9 000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.
(1)若t=1,求證:當(dāng)x>1時(shí),f(x)>0成立;
(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩種商品,經(jīng)營(yíng)銷售這兩種商品所得的利潤(rùn)依次為M萬(wàn)元和N萬(wàn)元,它們與投入資金萬(wàn)元的關(guān)系可由經(jīng)驗(yàn)公式給出:M=,N= (≥1).今有8萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,且乙商品至少要求投資1萬(wàn)元,
設(shè)投入乙種商品的資金為萬(wàn)元,總利潤(rùn);
(2)為獲得最大利潤(rùn),對(duì)甲、乙兩種商品的資金投入分別是多少?共能獲得多大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形為直角梯形,,,,,為中點(diǎn),,與交于點(diǎn),沿將四邊形折起,連接.
(1)求證:平面;
(2)若平面平面.
(I)求二面角的平面角的大小;
(II)線段上是否存在點(diǎn),使平面,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計(jì)劃投資金額不超過(guò)10萬(wàn)元,要求確?赡艿馁Y金虧損不超過(guò)1.8萬(wàn)元.問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬(wàn)元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016·哈爾濱高二檢測(cè))如圖,下列四個(gè)幾何體中,它們的三視圖(正視圖、俯視圖、側(cè)視圖)有且僅有兩個(gè)相同,而另一個(gè)不同的兩個(gè)幾何體是________.
(1)棱長(zhǎng)為2的正方體 (2)底面直徑和高均為2的圓柱
(3)底面直徑和高
均為2的圓錐
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分14分)
設(shè)橢圓的離心率為,其左焦點(diǎn)與拋物線的焦點(diǎn)相同.
(1)求此橢圓的方程;
(2)若過(guò)此橢圓的右焦點(diǎn)的直線與曲線只有一個(gè)交點(diǎn),則
①求直線的方程;
②橢圓上是否存在點(diǎn),使得,若存在,請(qǐng)說(shuō)明一共有幾個(gè)點(diǎn);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,,設(shè)函數(shù).
(1)若函數(shù)的圖象關(guān)于直線對(duì)稱,且時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)在(1)的條件下,當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com