如圖,在斜三棱柱ABC-A1B1C1中,∠A1AB=∠A1AC,AB=AC,側(cè)面B1BCC1與底面ABC所成的二面角為120°,E、F分別是棱CB1、AA1的中點(diǎn).
(1)AA1求與底面ABC所成的角;
(2)證明EA1∥平面B1FC;
(1)解:過A1作平面A1H⊥平面ABC,垂足為H.連接AH,并延長BC交于G,連接EG,于是∠A1AH為A1A與底面ABC所成的角. 因?yàn)椤螦1AB=∠A1AC,所以AG為的∠BAC平分線 又因?yàn)锳B=AC,所以AG⊥BC,且G為BC的中點(diǎn) 因此,由三垂線定理A1A⊥BC 因?yàn)锳1A∥B1B,且EG∥B1B,所以EG⊥BC,于是為∠AGE二面角A-BC-E的平面角,即∠AGE=120°,由于四邊形A1AGE為平行四邊形,得∠A1AG=60° 所以,A1A與底面ABC所成的角度為60° (II)證明:設(shè)EG與B1C的交點(diǎn)為P,則點(diǎn)P為EG的中點(diǎn),連結(jié)PF. 在平行四邊形AGEA1中,因?yàn)镕是A1A的中點(diǎn),∴A1F∥EP且A1F=EP∴A1FPE為平行四邊形∴A1E∥FP,而FP平面B1FC,平面B1FC,所以A1E∥平面B1FC |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com