x>4是
1
x
1
4
 
條件.
分析:先通過解分式不等式化簡
1
x
1
4
,判斷x>4成立是否推出
1
x
1
4
成立,反之
1
x
1
4
成立是否推出x>4,據(jù)充要條件的定義得到結(jié)論.
解答:解:∵
1
x
1
4
x-4
4x
>0
即x>4或x<0
若x>4成立推出x>4或x<0成立,
反之若x>4或x<0成立推不出x>4
故x>4是
1
x
1
4
的充分不必要條件
故答案為充分不必要
點評:判斷一個命題是另一個命題的什么條件,先化簡各個命題,再利用充要條件的定義加以判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)已知可導(dǎo)函數(shù)f(x),x∈D,則函數(shù)f(x)在點x0處取得極值的充分不必要條件是f′(x0)=0,x0∈D.
(2)已知命題P:?x∈R,sinx≤1,則¬p:?x∈R,sinx>1.
(3)已知命題p:
1
x 2-3x+2
>0
,則¬p:
1
x 2-3x+2
≤0

(4)給定兩個命題P:對任意實數(shù)x都有ax2+ax+1>0恒成立;Q:關(guān)于x的方程x2-x+a=0有實數(shù)根.如果P∧Q為假命題,P∨Q為真命題,則實數(shù)a的取值范圍是(-∞,0)∪(
1
4
,4)

其中所有真命題的編號是
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0,解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”有如下解法:
解:由cx2-bx+a>0且x≠0,所以
(c×2-bx+a)
x2
>0得a(
1
x
2-
b
x
+c>0,設(shè)
1
x
=y,得ay2-by+c>0,由已知得:1<y<2,即1<
1
x
<2,∴
1
2
<x<1所以不等式cx2-bx+a>0的解集是(
1
2
,1).
參考上述解法,解決如下問題:已知關(guān)于x的不等式
b
(x+a)
+
(x+c)
(x+d)
<0的解集是:(-3,-1)∪(2,4),則不等式
bx
(ax-1)
+
(cx-1)
(dx-1)
<0的解集是
(-
1
2
,-
1
4
)∪(
1
3
,1)
(-
1
2
,-
1
4
)∪(
1
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1).選修4-2:矩陣與變換
已知矩陣A=
1a
-1b
,A的一個特征值λ=2,其對應(yīng)的特征向量是α1=
2
1

(Ⅰ)求矩陣A;
(Ⅱ)若向量β=
7
4
,計算A2β的值.

(2).選修4-4:坐標系與參數(shù)方程
已知橢圓C的極坐標方程為ρ2=
12
3cos2θ+4sin2θ
,點F1,F(xiàn)2為其左、右焦點,直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R).求點F1,F(xiàn)2到直線l的距離之和.
(3).選修4-5:不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R+且x+y=4,則
1
x
+
2
y
的最小值是
1
4
(3+2
2
)
1
4
(3+2
2
)

查看答案和解析>>

同步練習(xí)冊答案