函數(shù)f(x)=
2x-2,x∈[1,+∞)
x2-2x,x∈(-∞,1)
,則函數(shù)y=f(x)-
1
4
的零點是
 
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)-
1
4
=0,分類討論解方程即可求得結(jié)果.
解答: 解:當x≥1時,2x-2-
1
4
=0
解得x=
9
8
;
當x<1時,x2-2x-
1
4
=0
解得x=
1-
5
2

故答案為:
9
8
1-
5
2
點評:此題是基礎(chǔ)題.考查函數(shù)的零點與方程根之間的關(guān)系.體現(xiàn)了轉(zhuǎn)化和分類討論的思想,以及考查了學生的計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

“實數(shù)a,b,c成等差數(shù)列”是“2b=a+c”的
 
條件.(按充分、必要關(guān)系填寫)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2ωx+
π
5
)(ω>0),對于任意m∈R,函數(shù)f(x)(x∈[m,m+π])的圖象與直線y=1有且僅有一個交點,則ω=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={x|-5≤x≤3},B={x|x<-2或x>4},
(1)求A∩B,(∁UA)∪(∁UB);
(2)已知C={x|a<x≤a+1},若C⊆B,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1+2sin500°cos500°
等于( 。
A、sin40°-cos40°
B、cos40°-sin40°
C、sin40°+cos40°
D、sin40°•cos40°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若A:B:C=1:2:3,則a:b:c=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長為4,點H在棱AA1上,且HA1=1,點E、F分別為B1C1、CC1的中點,P為側(cè)面BCC1B1上一動點,且PE⊥PF,則當點P運動時,求HP2的最小值是( 。
A、9
B、27--6
2
C、51-14
2
D、14-3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知E、F分別是正方體ABCD-A1B1C1D1的棱AA1、BB1的中點,求EF與面ACC1A1所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)r(x)=ax2-(2a-1)x+b的一個零點是2-
1
a
,函數(shù)g(x)=lnx,設(shè)函數(shù)f(x)=r(x)-g(x).
(1)求b的值;
(2)當a>0時,求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習冊答案