設(shè)的斜邊中點(diǎn),若,則的值是

(A)1       (B)2          (C) -1          (D) -2

 

【答案】

D

【解析】解:因?yàn)樵O(shè)的斜邊中點(diǎn),若,則,選D

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•四川)設(shè)P1,P2,…Pn為平面α內(nèi)的n個(gè)點(diǎn),在平面α內(nèi)的所有點(diǎn)中,若點(diǎn)P到點(diǎn)P1,P2,…Pn的距離之和最小,則稱點(diǎn)P為P1,P2,…Pn的一個(gè)“中位點(diǎn)”,例如,線段AB上的任意點(diǎn)都是端點(diǎn)A,B的中位點(diǎn),現(xiàn)有下列命題:
①若三個(gè)點(diǎn)A、B、C共線,C在線段AB上,則C是A,B,C的中位點(diǎn);
②直角三角形斜邊的中點(diǎn)是該直角三角形三個(gè)頂點(diǎn)的中位點(diǎn);
③若四個(gè)點(diǎn)A、B、C、D共線,則它們的中位點(diǎn)存在且唯一;
④梯形對(duì)角線的交點(diǎn)是該梯形四個(gè)頂點(diǎn)的唯一中位點(diǎn).
其中的真命題是
①④
①④
(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(四川卷解析版) 題型:填空題

(5分)設(shè)P1,P2,…Pn為平面α內(nèi)的n個(gè)點(diǎn),在平面α內(nèi)的所有點(diǎn)中,若點(diǎn)P到點(diǎn)P1,P2,…Pn的距離之和最小,則稱點(diǎn)P為P1,P2,…Pn的一個(gè)“中位點(diǎn)”,例如,線段AB上的任意點(diǎn)都是端點(diǎn)A,B的中位點(diǎn),現(xiàn)有下列命題:

①若三個(gè)點(diǎn)A、B、C共線,C在線段AB上,則C是A,B,C的中位點(diǎn);

②直角三角形斜邊的中點(diǎn)是該直角三角形三個(gè)頂點(diǎn)的中位點(diǎn);

③若四個(gè)點(diǎn)A、B、C、D共線,則它們的中位點(diǎn)存在且唯一;

④梯形對(duì)角線的交點(diǎn)是該梯形四個(gè)頂點(diǎn)的唯一中位點(diǎn).

其中的真命題是    (寫出所有真命題的序號(hào)).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省菏澤市高三5月高考沖刺題理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

【解析】第一問當(dāng)時(shí),,則

依題意得:,即    解得

第二問當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時(shí),,則

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時(shí),,令

當(dāng)變化時(shí),的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,。∴上的最大值為2.

②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

當(dāng)時(shí), 上單調(diào)遞增!最大值為。

綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時(shí)

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

∴對(duì)于,方程(**)總有解,即方程(*)總有解。

因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年四川省高考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)P1,P2,…Pn為平面α內(nèi)的n個(gè)點(diǎn),在平面α內(nèi)的所有點(diǎn)中,若點(diǎn)P到點(diǎn)P1,P2,…Pn的距離之和最小,則稱點(diǎn)P為P1,P2,…Pn的一個(gè)“中位點(diǎn)”,例如,線段AB上的任意點(diǎn)都是端點(diǎn)A,B的中位點(diǎn),現(xiàn)有下列命題:
①若三個(gè)點(diǎn)A、B、C共線,C在線段AB上,則C是A,B,C的中位點(diǎn);
②直角三角形斜邊的中點(diǎn)是該直角三角形三個(gè)頂點(diǎn)的中位點(diǎn);
③若四個(gè)點(diǎn)A、B、C、D共線,則它們的中位點(diǎn)存在且唯一;
④梯形對(duì)角線的交點(diǎn)是該梯形四個(gè)頂點(diǎn)的唯一中位點(diǎn).
其中的真命題是    (寫出所有真命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案