【題目】如圖①,是以為斜邊的等腰直角三角形,是等邊三角形,,如圖②,將沿折起使平面平面分別為的中點,點在棱上,且,點在棱上,且.
(1)在棱上是否存在一點,使平面平面?若存在,求的值;若不存在,請說明理由.
(2)求點到平面的距離.
【答案】(1)存在點滿足題意,;(2)
【解析】
(1)存在點,滿足題意,取的中點,連接為中點,可得,可證平面,再由已知可得,得到,有平面,即可證明結(jié)論;
(2)因為平面平面,可證平面,
平面,從而有,求出面積,根據(jù),即可求出結(jié)論.
(1)存在點滿足題意,,
證明如下:如圖,取的中點,連接,
因為,,所以.
又平面,平面,
所以平面.
因為,所以,
所以,
又所以,所以.
又平面,平面,所以平面.
因為,所以平面平面.
所以
(2)如圖,連接.因為平面平面,,
平面平面,所以平面.
又平面,所以.
同理,平面,
所以,
.
由題得,設(shè)點到平面的距離為,
由,得,
所以,
即點到平面的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
如圖,已知拋物線,過點任作一直線與相交于兩點,過點作軸的平行線與直線相交于點(為坐標原點).
(1)證明:動點在定直線上;
(2)作的任意一條切線(不含軸)與直線相交于點,與(1)中的定直線相交于點,證明:為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為拋物線的焦點,過的動直線交拋物線于,兩點.當直線與軸垂直時,.
(1)求拋物線的方程;
(2)設(shè)直線的斜率為1且與拋物線的準線相交于點,拋物線上存在點使得直線,,的斜率成等差數(shù)列,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某品種一批樹苗生長情況,在該批樹苗中隨機抽取了容量為120的樣本,測量樹苗高度(單位:),經(jīng)統(tǒng)計,其高度均在區(qū)間內(nèi),將其按分成6組,制成如圖所示的頻率分布直方圖.其中高度為及以上的樹苗為優(yōu)質(zhì)樹苗.
試驗區(qū) | 試驗區(qū) | 合計 | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計 |
(1)求圖中的值,并估計這批樹苗高度的中位數(shù)和平均數(shù)(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)已知所抽取的這120棵樹苗來自于,兩個試驗區(qū),部分數(shù)據(jù)如上列聯(lián)表:將列聯(lián)表補充完整,并判斷是否有的把握認為優(yōu)質(zhì)樹苗與,兩個試驗區(qū)有關(guān)系,并說明理由.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖像向左平移個單位,再將所有點的橫坐標縮短到原來的倍,縱坐標不變,得到函數(shù)的圖像則下面對函數(shù)的敘述不正確的是( )
A.函數(shù)的周期
B.函數(shù)的一個對稱中心
C.函數(shù)在區(qū)間內(nèi)單調(diào)遞增
D.當,時,函數(shù)有最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,過濾由核心部件濾芯來實現(xiàn).在使用過程中,濾芯需要不定期更換,其中濾芯每個200元.如圖是根據(jù)100臺該款凈水器在十年使用期內(nèi)更換的濾芯的件數(shù)制成的柱狀圖.(以100臺凈水器更換濾芯的頻率代替1臺凈水器更換濾芯發(fā)生的概率)
(1)估計一臺凈水器在使用期內(nèi)更換濾芯的件數(shù)的眾數(shù)和中位數(shù).
(2)估計一臺凈水器在使用期內(nèi)更換濾芯的件數(shù)大于10的概率.
(3)已知上述100臺凈水器在購機的同時購買濾芯享受5折優(yōu)惠(使用過程中如需再購買無優(yōu)惠),假設(shè)每臺凈水器在購機的同時購買濾芯10個,這100臺凈水器在使用期內(nèi),更換濾芯的件數(shù)記為a,所需費用記為y,補全下表,估計這100臺凈水器在使用期內(nèi)購買濾芯所需總費用的平均數(shù).
100臺該款凈水器在試用期內(nèi)更換濾芯的件數(shù)a | 9 | 10 | 11 | 12 |
頻數(shù) | ||||
費用y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全球關(guān)注的抗擊“新冠肺炎”中,某跨國科研中心的一個團隊,研制了甲、乙兩種治療“新冠肺炎”新藥,希望知道哪種新藥更有效,為此進行動物試驗,試驗方案如下:
第一種:選取共10只患病白鼠,服用甲藥后某項指標分別為:;
第二種:選取共10只患病白鼠,服用乙藥后某項指標分別為:;
該團隊判定患病白鼠服藥后這項指標不低于85的確認為藥物有效,否則確認為藥物無效.
(1)已知第一種試驗方案的10個數(shù)據(jù)的平均數(shù)為89,求這組數(shù)據(jù)的方差;
(2)現(xiàn)需要從已服用乙藥的10只白鼠中隨機抽取7只,記其中服藥有效的只數(shù)為,求的分布列與期望;
(3)該團隊的另一實驗室有1000只白鼠,其中900只為正常白鼠,100只為患病白鼠,每用新研制的甲藥給所有患病白鼠服用一次,患病白鼠中有變?yōu)檎0资,但正常白鼠仍?/span>變?yōu)榛疾“资螅僭O(shè)實驗室的所有白鼠都活著且數(shù)量不變,且記服用次甲藥后此實驗室正常白鼠的只數(shù)為.
(i)求并寫出與的關(guān)系式;
(ii)要使服用甲藥兩次后,該實驗室正常白鼠至少有950只,求最大的正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓右焦點,離心率為,過作兩條互相垂直的弦,設(shè)中點分別為.
(1) 求橢圓的標準方程;
(2)求以為頂點的四邊形的面積的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某面包推出一款新面包,每個面包的成本價為4元,售價為10元,該款面包當天只出一爐(一爐至少15個,至多30個),當天如果沒有售完,剩余的面包以每個2元的價格處理掉,為了確定這一爐面包的個數(shù),該店記錄了這款新面包最近30天的日需求量(單位:個),整理得下表:
(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個)線性相關(guān),求關(guān)于的線性回歸方程;
(2)以30天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個數(shù)為24,記當日這款新面包獲得的總利潤為(單位:元).
(。┤羧招枨罅繛15個,求;
(ⅱ)求的分布列及其數(shù)學(xué)期望.
相關(guān)公式: ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com