己知函數(shù)f (x)=e2,xR

(1)求 f (x)的反函數(shù)圖象上點(1,0)處的切線方程。

(2)證明:曲線y=f(x)與曲線y=有唯一公共點;

(3)設(shè)a﹤b,比較的大小,并說明理由。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:


畫出2x-3<y≤3表示的區(qū)域,并求出所有正整數(shù)解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


己知函數(shù)f(x)=在[-1,1]上的最大值為M(a) ,則函數(shù)g(x)=M(x)-的零點個數(shù)為

A. 1個     B. 2個     C. 3個       D. 4個  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知數(shù)列{an}是首項為-1,公差d 0的等差數(shù)列,且它的第2、3、6項依次構(gòu)成等比數(shù)列{ bn}的前3項。

(1)求{an}的通項公式;

(2)若{ bn}的前項和為Sn,求使得Sn﹤400的n的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


雙曲線的一條漸近線方程為,則________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


的二項展開式中,所有二項式系數(shù)和為,則該展開式中的常數(shù)項為         .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知函數(shù)的反函數(shù)為,則___________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


函數(shù)的定義域是

    A. B.    C. D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

查看答案和解析>>

同步練習冊答案