設變量x、y滿足
2x+7y-14≥0
5x+2y-10≥0
x,y∈N
,則4x+9y的最小值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用z的幾何意義,利用數(shù)形結合即可得到結論.
解答: 解:作出不等式組對應的平面區(qū)域如圖:
由z=4x+9y得y=-
4
9
x+
z
9
,
平移直線y=-
4
9
x+
z
9
,由圖象可知當直線y=-
4
9
x+
z
9
,經(jīng)過點A(4,1)時,
直線y=-
4
9
x+
z
9
的截距最小,此時z最小,
由此時4×4+9×2=25,
故答案為:25.
點評:本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點A,D分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點和上頂點,橢圓的左右焦點分別是F1和F2,點P是線段AD上的動點,如果
PF1
PF2
的最大值2,最小值是-
2
3
,那么,橢圓的C的標準方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓的標準方程(x-a)2+(y-b)2=r2,圓心A(a,b),半徑r,若點M(x0,y0)在圓上,則
 
;若點M(x0,y0)在圓外,則
 
;若點M(x0,y0)在圓內(nèi),則
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在空間四邊形ABCD中,G是△BCD的重心,E、F、H分別為邊CD、AD和BC的中點,化簡下列各表達式,并標出化簡結果的向量.
(1)
AG
+
1
3
BE
+
1
2
CA

(2)
1
2
AB
+
AC
-
AD

(3)
1
3
AB
+
AC
+
AD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是雙曲線上
x2
16
-
y2
9
=1除頂點外的任意一點,F(xiàn)1,F(xiàn)2分別為左右焦點,若△PF1F2內(nèi)切圓與F1F2切于點M,則|F1M|•|F2M|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}滿足a2=2,a4a6=4a72,則a4的值為(  )
A、
1
2
B、1
C、2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,E是AD的中點,P是AB邊上的點,AB=3,AD=2
(1)設AP=x,△DPE的周長為y,求函數(shù)y=f(x)的解析式;
(2)當∠DPE取得最大值時,求AP的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖Rt△O′A′B′是一平面圖形的直觀圖,直角邊O′B′=2,則這個平面圖形的面積是( 。
A、2
2
B、1
C、4
2
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x>0,則函數(shù)y=2-3x-
1
x
有最大值
 

查看答案和解析>>

同步練習冊答案