【題目】某人研究中學生的性別與成績、視力、智商、閱讀量這4個變量的關(guān)系,隨機抽查了52名中學生,得到統(tǒng)計數(shù)據(jù)如表1至表4,則與性別有關(guān)聯(lián)的可能性最大的變量是(
表1

成績
性別

不及格

及格

總計

6

14

20

10

22

32

總計

16

36

52

表2

視力
性別

總計

4

16

20

12

20

32

總計

16

36

52

表3

智商
性別

偏高

正常

總計

8

12

20

8

24

32

總計

16

36

52

表4

閱讀量
性別

豐富

不豐富

總計

14

6

20

2

30

32

總計

16

36

52


A.成績
B.視力
C.智商
D.閱讀量

【答案】D
【解析】解:表1:X2= ≈0.009;
表2:X2= ≈1.769;
表3:X2= ≈1.3;
表4:X2= ≈23.48,
∴閱讀量與性別有關(guān)聯(lián)的可能性最大,
故選:D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= 的定義域為(
A.(0,
B.(2,+∞)
C.(0, )∪(2,+∞)
D.(0, ]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,且a>c,已知 =2,cosB= ,b=3,求:
(1)a和c的值;
(2)cos(B﹣C)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足.

(I)求證:是等比數(shù)列;

(II)求證:不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)求的最大值與最小值;

(2)若對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】教材上一例問題如下:

一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)如下表,試建立yx之間的回歸方程.

溫度 x/℃

21

23

25

27

29

32

35

產(chǎn)卵數(shù)y/

7

11

21

24

66

115

325

某同學利用圖形計算器研究它時,先作出散點圖(如圖所示),發(fā)現(xiàn)兩個變量不呈線性相關(guān)關(guān)系根據(jù)已有的函數(shù)知識,發(fā)現(xiàn)樣本點分布在某一條指數(shù)型曲線的附近是待定的參數(shù)),于是進行了如下的計算

根據(jù)以上計算結(jié)果,可以得到紅鈴蟲的產(chǎn)卵數(shù)y對溫度x的回歸方程為__________.(精確到0.0001) (提示:利用代換可轉(zhuǎn)化為線性關(guān)系

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知首項是1的兩個數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn= ,求數(shù)列{cn}的通項公式;
(2)若bn=3n1 , 求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex+ex , 其中e是自然對數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù);
(2)若關(guān)于x的不等式mf(x)≤ex+m﹣1在(0,+∞)上恒成立,求實數(shù)m的取值范圍;
(3)已知正數(shù)a滿足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,試比較ea1與ae1的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實數(shù)a的取值范圍為(
A.[﹣ , ]
B.[﹣ ]
C.[﹣ , ]
D.[﹣ ]

查看答案和解析>>

同步練習冊答案