【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)為60元,該廠為鼓勵(lì)銷售商訂購,決定當(dāng)一次訂購量超過100件時(shí),每多訂購一件,訂購的全部服裝的出廠單價(jià)就降低0.02元,根據(jù)市場調(diào)查,銷售商一次訂購量不會(huì)超過500件.
(1)設(shè)一次訂購量為x件,服裝的實(shí)際出廠單價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式;
(2)當(dāng)銷售商一次訂購多少件服裝時(shí),該服裝廠獲得的利潤最大?并求出最大值.
【答案】
(1)解:設(shè)一次訂購量為x件,服裝的實(shí)際出廠單價(jià)為P元,
當(dāng)0<x≤100時(shí),P=60
當(dāng)100<x≤500時(shí),
所以
(2)解:設(shè)銷售商一次訂購量為x件,工廠獲得的利潤為y元,則有
當(dāng)0<x≤100且x∈N時(shí),易知x=100,y取得最大值2000元
當(dāng)100<x≤500且x∈N時(shí), ,
則此函數(shù)在100<x≤500且x∈N上遞增,故x=500時(shí),y取得最大值6000元.
∵6000>2000,
∴當(dāng)銷售商一次訂購500件服裝時(shí),該服裝廠獲得的最大利潤6000元
【解析】(1)利用分段函數(shù)直接列出函數(shù)的解析式即可.(2)利用(1)列出利潤函數(shù),分別求解分段函數(shù)的最值,推出結(jié)果即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于任意實(shí)數(shù)a,b,c,d,以下四個(gè)命題中的真命題是( )
A.若a>b,c≠0則ac>bc
B.若a>b>o,c>d則ac>bd
C.若a>b,則
D.若ac2>bc2則a>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓過點(diǎn), , 分別為橢圓的右、下頂點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在橢圓內(nèi),滿足直線, 的斜率乘積為,且直線, 分別交橢圓于點(diǎn), .
(i) 若, 關(guān)于軸對稱,求直線的斜率;
(ii) 求證: 的面積與的面積相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,點(diǎn)E,F(xiàn)分別是棱BC,CC1的中點(diǎn),P是側(cè)面BCC1B1內(nèi)一點(diǎn),若A1P∥平面AEF,則線段A1P長度的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計(jì)全國高三學(xué)生的視力情況,得到如圖所示的頻率分布直方圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻率成等比數(shù)列,后6組的頻率成等差數(shù)列.
(Ⅰ)求出視力在[4.7,4.8]的頻率;
(Ⅱ)現(xiàn)從全國的高三學(xué)生中隨機(jī)地抽取4人,用表示視力在[4.3,4.7]的學(xué)生人數(shù),寫出的分布列,并求出的期望與方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)F(x)=g(x)+h(x)=ex , 且g(x),h(x)分別是R上的偶函數(shù)和奇函數(shù),若對任意的x∈(0,+∞),不等式g(2x)≥ah(x)恒成立,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,2 ]
B.(﹣∞,2 )
C.(﹣∞,2]
D.(﹣∞,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣3x2+a(6﹣a)x+c.
(1)當(dāng)c=19時(shí),解關(guān)于a的不等式f(1)>0;
(2)若關(guān)于x的不等式f(x)>0的解集是(﹣1,3),求實(shí)數(shù)a,c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)為圓的圓心.經(jīng)過點(diǎn)的直線交拋物線于兩點(diǎn),交圓于兩點(diǎn), 在第一象限, 在第四象限.
(1)求拋物線的方程;
(2)是否存在直線,使是與的等差中項(xiàng)?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個(gè)班進(jìn)行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績后,得到如下列聯(lián)表:(單位:人).
已知在全部105人中隨機(jī)抽取1人成績是優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表,并根據(jù)表中數(shù)據(jù)判斷,是否有的把握認(rèn)為“成績與班級有關(guān)系”?
(2)若甲班優(yōu)秀學(xué)生中有男生6名,女生4名,現(xiàn)從中隨機(jī)選派3名學(xué)生參加全市數(shù)學(xué)競賽,記參加競賽的男生人數(shù)為,求的分布列與期望.
附:
0.15 | 0.10 | 0.050 | 0.010 | |
2.072 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com