【題目】如圖,橢圓的左、右焦點(diǎn)分別為,橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長為6,離心率為,

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)的直線交橢圓兩點(diǎn),問在軸上是否存在定點(diǎn),使得為定值?證明你的結(jié)論.

【答案】(1)(2)存在定點(diǎn),使得為定值.

【解析】

根據(jù)點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長為6,離心率為,結(jié)合性質(zhì) ,列出關(guān)于 、 、的方程組,求出,即可得結(jié)果;(Ⅱ)設(shè)出直線方程,直線方程與橢圓方程聯(lián)立,消去可得關(guān)于的一元二次方程,表示為,利用韋達(dá)定理化簡可得,令可得結(jié)果.

由題設(shè)得,,解得,∴.

故橢圓的方程為.

,當(dāng)直線的斜率存在時,設(shè)此時直線的方程為,

設(shè),,代入橢圓的方程,消去并整理得,

,,,

可得.設(shè)點(diǎn),

那么,

軸上存在定點(diǎn),使得為定值,則有,解得,

此時,,

當(dāng)直線的斜率不存在時,此時直線的方程為,代入橢圓方程解得,

此時,,, ,

綜上,軸上存在定點(diǎn),使得為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,其中a1=25,a4=16

1)數(shù)列{an}從哪一項開始小于0;

2)求a1+a3+a5+…+a19值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形和菱形所在的平面相互垂直,,的中點(diǎn).

(1)求證:平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M點(diǎn)為圓心的圓及其上一點(diǎn).

1)設(shè)圓Ny軸相切,與圓M外切,且圓心在直線上,求圓N的標(biāo)準(zhǔn)方程;

2)設(shè)平行于OA的直線l與圓M相交于BC兩點(diǎn)且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是南北方向的一條公路,是北偏東方向的一條公路,某風(fēng)景區(qū)的一段邊界為曲線.為方便游客光,擬過曲線上的某點(diǎn)分別修建與公路,垂直的兩條道路,且,的造價分別為5萬元百米,40萬元百米,建立如圖所示的直角坐標(biāo)系,則曲線符合函數(shù)模型,設(shè),修建兩條道路的總造價為萬元,題中所涉及的長度單位均為百米.

1)求解析式;

2)當(dāng)為多少時,總造價最低?并求出最低造價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)

經(jīng)常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

(ii)從這5人中,再隨機(jī)選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面多邊形中,四邊形為正方形, , ,沿著將圖形折成圖2,其中, , 的中點(diǎn).

(1)求證: ;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學(xué)計劃在一年級開設(shè)冰球課程,為了解學(xué)生對冰球運(yùn)動的興趣,隨機(jī)從該校一年級學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對冰球運(yùn)動有興趣的占,而男生有10人表示對冰球運(yùn)動沒有興趣額.

(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”?

(2)若將頻率視為概率,現(xiàn)再從該校一年級全體學(xué)生中,采用隨機(jī)抽樣的方法每次抽取1名學(xué)生,抽取5次,記被抽取的5名學(xué)生中對冰球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差.

附表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,動點(diǎn)P,Q從點(diǎn)出發(fā)在單位圓上運(yùn)動,點(diǎn)P按逆時針方向每秒鐘轉(zhuǎn)弧度,點(diǎn)Q按順時針方向每秒鐘轉(zhuǎn)弧度,則P,Q兩點(diǎn)在第2019次相遇時,點(diǎn)P的坐標(biāo)為________.

查看答案和解析>>

同步練習(xí)冊答案