(2013•威海二模)試驗(yàn)測(cè)得x,y的四組數(shù)據(jù)如下表,已知x,y線性相關(guān),且
y
=0.95x+2.8,則m=(  )
 x  0  1  3  4
 y 2.2 4.3  m 6.7
分析:本題考查的知識(shí)點(diǎn)是線性回歸直線的性質(zhì),由線性回歸直線方程中系數(shù)的求法,我們可知(
.
x
,
.
y
)在回歸直線上,滿足回歸直線的方程,我們根據(jù)已知表中數(shù)據(jù)計(jì)算出(
.
x
,
.
y
),再將點(diǎn)的坐標(biāo)代入回歸直線方程,即可求出對(duì)應(yīng)的a值.
解答:解:∵點(diǎn)(
.
x
.
y
)在回歸直線上,
計(jì)算得
.
x
=
0+1+3+4
4
=2,
.
y
=
2.2+4.3+m+6.7
4
=
m
4
+3.3

∴回歸方程過(guò)點(diǎn)(2,
m
4
+3.3

代入得
m
4
+3.3
=0.95×2+2.8
∴m=5.6;
故選:C.
點(diǎn)評(píng):本題就是考查回歸方程過(guò)定點(diǎn)(
.
x
,
.
y
),考查線性回歸方程,考查待定系數(shù)法求字母系數(shù),是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•威海二模)函數(shù)f(x)=
sinx
ln(x+2)
的圖象可能是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•威海二模)已知數(shù)列an的通項(xiàng)公式為an=(-1)n•2n+1,將該數(shù)列的項(xiàng)按如下規(guī)律排成一個(gè)數(shù)陣:
則該數(shù)陣中的第10行,第3個(gè)數(shù)為
97
97

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•威海二模)若i是虛數(shù)單位,則復(fù)數(shù)
1+i
i3
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•威海二模)已知全集U={-2,-1,0,1,2,3},M{-1,0,1,3},N{-2,0,2,3},則(?UM)∩N為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案