分析:(1)令x=1,y=0,求出f(0)=2,再令x=0即可判斷函數(shù)的奇偶性;
(2)由x≠0時(shí),f(x)>2,則f(x+y)+f(x-y)=f(x)f(y)>2f(y),即f(x+y)-f(y)>f(y)-f(x-y),再令x=1,y=n,有f(n+1)-f(n)>f(n)-f(n-1),再由遞推,即可得到;
(3)由x≠0時(shí),f(x)>2,則f(x+y)+f(x-y)=f(x)f(y)>2f(y),即f(x+y)-f(y)>f(y)-f(x-y)令y=kx(k為正整數(shù)),對(duì)任意的k為正整數(shù),有f[(k+1)x]-f(kx)>f(kx)-f[(k-1)x],再由遞推即可得到對(duì)于k為正整數(shù),總有f[(k+1)x]>f(kx)成立,即有n<m,則有f(nx)<f(mx)成立,可設(shè)|a|=
,|b|=
,其中q
1,q
2是非負(fù)整數(shù),p
1,p
2都是正整數(shù),再由偶函數(shù)的結(jié)論和前面的結(jié)論,即可得到大小.
解答:
解:(1)令x=1,y=0,∴f(1)f(0)=f(1)+f(1),
又f(1)=
,∴f(0)=2.
令x=0,得f(0)f(y)=f(y)+f(-y),即2f(y)=f(y)+f(-y),
∴f(y)=f(-y)對(duì)任意的實(shí)數(shù)y總成立,
∴f(x)為偶函數(shù);
(2)結(jié)論:a
n<a
n+1.
證明:∵x≠0時(shí),f(x)>2,
∴f(x+y)+f(x-y)=f(x)f(y)>2f(y),
即f(x+y)-f(y)>f(y)-f(x-y)
∴令x=1,y=n,有f(n+1)-f(n)>f(n)-f(n-1),
則f(n+1)-f(n)>f(n)-f(n-1)>f(n-1)-f(n-2)>…>f(1)-f(0)>0.
∴a
n<a
n+1.
(3)結(jié)論:f(a)<f(b).
證明:∵x≠0時(shí),f(x)>2,
∴f(x+y)+f(x-y)=f(x)f(y)>2f(y),即f(x+y)-f(y)>f(y)-f(x-y)
∴令y=kx(k為正整數(shù)),對(duì)任意的k為正整數(shù),有f[(k+1)x]-f(kx)>f(kx)-f[(k-1)x],
則f[(k+1)x]-f(kx)>f(kx)-f[(k-1)x]>…>f(x)-f(0)>0
∴對(duì)于k為正整數(shù),總有f[(k+1)x]>f(kx)成立.
∴對(duì)于m,n為正整數(shù),若n<m,則有f(nx)<f[(n-1)x]<…<f(mx)成立.
∵a,b為有理數(shù),所以可設(shè)|a|=
,|b|=
,其中q
1,q
2是非負(fù)整數(shù),p
1,p
2都是正整數(shù),
則|a|=
,|b|=
,令x=
,t=q
1p
2,s=p
1q
2,則t,s為正整數(shù).
∵|a|<|b|,∴t<s,∴f(tx)<f(sx),即f(|a|)<f(|b|).
∵函數(shù)f(x)為偶函數(shù),∴f(|a|)=f(a),f(|b|)=f(b),
∴f(a)<f(b).