【題目】已知四棱錐中,平面平面ABCD,EPA的中點.

(Ⅰ)求證:平面PBC

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)見解析;(Ⅱ)

【解析】

(Ⅰ)取的中點,連結,,推導出四邊形為平行四邊形,從而,由此能證明平面

(Ⅱ)取的中點,連結,,以,分別為,,軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值.

證明:(Ⅰ)取的中點,連結,,

由已知得的中點,,

,,,

四邊形為平行四邊形,

,又平面,平面,

平面

(Ⅱ)取的中點,連結,

因為,

所以,又平面平面ABCD,所以平面ABCD,

所以,由已知得,

ODOB,OP分別為x,y,z軸,建立空間直角坐標系

,故

所以.

設平面EBD的法向量為,則,

,

所以,取,即.

又平面BDC的法向量為, ,,

所以.

又二面角為鈍角,所以二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】把編號為12,34,5的五個大小、形狀相同的小球,隨機放入編號為1,23,4,5的五個盒子里.每個盒子里放入一個小球.

1)求恰有兩個球的編號與盒子的編號相同的概率;

2)設恰有個小球的編號與盒子編號相同,求隨機變量的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形中, , , 分別為的中點,以為圓心, 為半徑的圓交,點在弧上運動(如圖).若,其中,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將4名大學生隨機安排到A,B,C,D四個公司實習.

(1)求4名大學生恰好在四個不同公司的概率;

(2)隨機變量X表示分到B公司的學生的人數(shù),求X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】湖南省會城市長沙又稱星城,是楚文明和湖湘文化的發(fā)源地,是國家首批歷史文化名城.城內既有岳麓山、橘子洲等人文景觀,又有岳麓書院、馬王堆漢墓等名勝古跡,每年都有大量游客來長沙參觀旅游.為合理配置旅游資源,管理部門對首次來岳麓山景區(qū)游覽的游客進行了問卷調查,據(jù)統(tǒng)計,其中的人計劃只游覽岳麓山,另外的人計劃既游覽岳麓山又參觀馬王堆.每位游客若只游覽岳麓山,則記1分;若既游覽岳麓山又參觀馬王堆,則記2.假設每位首次來岳麓山景區(qū)游覽的游客計劃是否參觀馬王堆相互獨立,視頻率為概率.

1)從游客中隨機抽取3人,記這3人的合計得分為,求的分布列和數(shù)學期望;

2)從游客中隨機抽取人(),記這人的合計得分恰為分的概率為,求;

3)從游客中隨機抽取若干人,記這些人的合計得分恰為分的概率為,隨著抽取人數(shù)的無限增加,是否趨近于某個常數(shù)?若是,求出這個常數(shù);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第七屆世界軍人運動會于20191018日至27日在中國武漢舉行,中國隊以1336442銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務,要求每個人都要被派出去提供服務,且每個場地都要有志愿者服務,則甲和乙恰好在同一組的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第七屆世界軍人運動會于20191018日至27日在中國武漢舉行,中國隊以1336442銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務,要求每個人都要被派出去提供服務,且每個場地都要有志愿者服務,則甲和乙恰好在同一組的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的質量以其質量指標值衡量,并依據(jù)質量指標值劃分等級如下表:

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?

(2)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產(chǎn)品質量指標值近似滿足,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,四邊形為直角梯形,,,,為線段上一點,滿足,的中點,現(xiàn)將梯形沿折疊(如圖2),使平面平面.

1)求證:平面平面

2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案