已知圓
:
,直線
被圓所截得的弦的中點為P(5,3).(1)求直線
的方程;(2)若直線
:
與圓
相交于兩個不同的點,求b的取值范圍.
(1)
(2)
(I)根據(jù)圓心CP與半徑垂直,可求出直線l
1的斜率,進而得到點斜式方程,再化成一般式即可.
(II)根據(jù)直線與圓的位置關系,圓心到直線的距離小于半徑得到關于b的不等式,從而解出b的取值范圍.
(1)由
,得
,
∴圓心
,半徑為3.…………………2分
由垂徑定理知直線
直線
,
直線
的斜率
,故直線
的斜率
,……………5分
∴直線
的方程為
,即
.…………………6分
(2)解法1:由題意知方程組
有兩組解,由方程組消去
得
,該方程應有兩個不同的解,…………………9分
∴
,化簡得
,………………10分
由
解得
∴
的解為
.…………………………12分
故b的取值范圍是
.…………………………13分
解法2:同(1)有圓心
,半徑為3.…………………9分
由題意知,圓心
到直線
:
的距離小于圓的半徑,即
,即
,………………………11分
解得
,………………………13分
故b的取值范圍是
.…………………13分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知圓
:
,是否存在斜率為
的直線
,使
被圓
截得的弦
為直徑的圓經過原點,若存在,求出直線
的方程,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
過點
且與圓
相切的直線方程為_________________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
由直線
上的一點向圓
引切線,則切線長的最小值( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
以點
為圓心且與
y軸相切的圓的方程是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
平面
與球O相交于周長為
的⊙
,A、B為⊙
上兩點,若∠AOB=
,且A、B的球面距離為
,則
的長度為( )
A.1 B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設A、B為直線
與圓
的兩個交點,則
( 。
A.1 B.2 C.
D.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
則滿足條件的查找的條數(shù)是____________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知兩圓相交于A(-1,3)、B(-6,m)兩點,且這兩圓的圓心均在直線
上,則點(m,c)不滿足下列哪個方程( )
查看答案和解析>>