【題目】等差數(shù)列{an}中,a3+a4=4,a5+a7=6.
(1)求{an}的通項公式;
(2)設bn=[an],求數(shù)列{bn}的前10項和,其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[2.6]=2.

【答案】
(1)

解:設等差數(shù)列{an}的公差為d,

∵a3+a4=4,a5+a7=6.

,

解得:

∴an= ;


(2)

解:∵bn=[an],

∴b1=b2=b3=1,

b4=b5=2,

b6=b7=b8=3,

b9=b10=4.

故數(shù)列{bn}的前10項和S10=3×1+2×2+3×3+2×4=24


【解析】(Ⅰ)設等差數(shù)列{an}的公差為d,根據(jù)已知構造關于首項和公差方程組,解得答案(2)根據(jù)bn=[an],列出數(shù)列{bn}的前10項,相加可得答案.;本題考查的知識點是等差數(shù)列的通項公式,等差數(shù)列的性質(zhì),難度中檔.
【考點精析】本題主要考查了等差數(shù)列的通項公式(及其變式)和等差數(shù)列的性質(zhì)的相關知識點,需要掌握通項公式:;在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ex﹣2x.
(1)討論f(x)的單調(diào)性;
(2)設g(x)=f(2x)﹣4bf(x),當x>0時,g(x)>0,求b的最大值;
(3)已知1.4142< <1.4143,估計ln2的近似值(精確到0.001).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個工時,生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代有計算多項式值的秦九韶算法,如圖是實現(xiàn)該算法的程序框圖.執(zhí)行該程序框圖,若輸入的x=2,n=2,依次輸入的a為2,2,5,則輸出的s=( 。

A.7
B.12
C.17
D.34

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P0-2),橢圓E 的離心率為,F是橢圓E的右焦點,直線PF的斜率為2,O為坐標原點.

1)求橢圓E的方程;

2)直線l被圓Ox2+y2=3截得的弦長為3,且與橢圓E交于AB兩點,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過點P(3,2),且在兩坐標軸上的截距相等的直線方程為(寫出一般式)___

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=3,an1+2(nN*).

()計算a2,a3a4的值;

()根據(jù)計算結果猜想{an}的通項公式,并用數(shù)學歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在以A,B,C,D,E,F(xiàn)為頂點的五面體中,面ABEF為正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E與二面角C﹣BE﹣F都是60°.

(1)證明平面ABEF⊥平面EFDC;
(2)求二面角E﹣BC﹣A的余弦值.

查看答案和解析>>

同步練習冊答案