若關(guān)于x的不等式x3-3x2-9x+2-m≥0對(duì)任意x∈[-2,2]恒成立,則m的取值范圍是
 
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:設(shè)y=x3-3x2-9x+2,則y′=3x2-6x-9,由此利用導(dǎo)數(shù)性質(zhì)能求出關(guān)于x的不等式x3-3x2-9x+2≥m對(duì)任意x∈[-2,2]恒成立的m的取值范圍.
解答: 解:設(shè)y=x3-3x2-9x+2,則y′=3x2-6x-9,
令y′=3x2-6x-9=0,得x1=-1,x2=3,
∵3∉[-2,2],∴x2=3(舍),
列表討論:
 x (-2,-1)-1 (-1,2)
 f′(x)+ 0-
 f(x) 極大值
∵f(-2)=-8-12+18+2=0,
f(-1)=-1-3+9+2=7,
f(2)=8-12-18+2=-20,
∴y=x3-3x2-9x+2在x∈[-2,2]上的最大值為7,最小值為-20,
∵關(guān)于x的不等式x3-3x2-9x+2≥m對(duì)任意x∈[-2,2]恒成立,
∴m≤-20,
故答案為:(-∞,-20].
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上最值的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(ax-2)ex在x=1處取得極值.
(1)求a的值;
(2)求函數(shù)f(x)在[m,m+1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(X)=
x2+a
ex
(x∈R)(e是自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=-15時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間[
1
e
,e]上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)證明
1+12
e
+
1+22
e2
+
1+32
e3
+…+
1+n2
en
5n
4
e
對(duì)一切n∈N*恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與-
33
4
π終邊相同的最小正角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
4x•a+2x+1
的定義域?yàn)椋?∞,1],則實(shí)數(shù)a的取值集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是遞減的等差數(shù)列,且a3+a9=10,a5•a7=16,則數(shù)列{an}的前n項(xiàng)和Sn的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以兩直線2x±3y=0為漸近線,且實(shí)軸長(zhǎng)為6的雙曲線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在R上的函數(shù)f(x),有下列4個(gè)命題:
①若f(x)是奇函數(shù),則f(x-1)的圖象關(guān)于A(-1,0)對(duì)稱.
②若f(x)=2x與g(x)=log2x,則函數(shù)f(x)與g(x)得圖象關(guān)于y=x對(duì)稱.
③若函數(shù)的圖象f(x-1)關(guān)于直線x=1對(duì)稱,則f(x)為偶函數(shù).
④f(x)是偶函數(shù),且f(x)在[a,b]上是減函數(shù),則f(x)在[-b,-a]上也是減函數(shù).
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:橢圓
x2
25
+
y2
9
=1與
x2
9-k
+
y2
25-k
=1(0<k<9)有相同焦點(diǎn),命題q:函數(shù)y=
|x-1|-2
的定義域是(-∞,-1]∪[3,+∞),則( 。
A、“p或q”為假
B、“p且q”為真
C、p真q假
D、p假q真

查看答案和解析>>

同步練習(xí)冊(cè)答案