【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)在R上的解析式;
(3)求不等式﹣7≤f(x)≤3的解集.

【答案】
(1)解: f(3)+f(﹣1)=f(3)﹣f(1)=7﹣1=6;
(2)解:當(dāng)x<0時(shí),f(x)=﹣f(﹣x)=﹣(2x﹣1)=﹣2x+1,

∴f(x)=


(3)解:①當(dāng)x<0時(shí),﹣7≤﹣2x+1≤3,∴﹣2≤2x≤8,且x<0,∴﹣3≤x<0.

②當(dāng)x≥0時(shí),﹣7≤2x﹣1≤3,∴0≤x≤2.

綜上:解集為[﹣3,2]


【解析】(1)利用函數(shù)的奇偶性即可求f(3)+f(﹣1);(2)利用函數(shù)的奇偶性的性質(zhì)即可求f(x)的解析式;(3)利用函數(shù)的解析式,列出不等式求解即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí),掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿(mǎn)足f(x)+g(x)=2x , 則有(
A.f(3)<g(0)<f(4)
B.g(0)<f(4)<f(3)
C.g(0)<f(3)<f(4)
D.f(3)<f(4)<g(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,討論的單調(diào)性;

(2)若,證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1 , F2是橢圓的兩個(gè)焦點(diǎn),過(guò)F1且與橢圓長(zhǎng)軸垂直的直線(xiàn)交橢圓于A,B兩點(diǎn),若△ABF2是正三角形,則這個(gè)橢圓的離心率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足: .

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面四個(gè)函數(shù):(1)y=1﹣x;(2)y=2x﹣1;(3)y=x2﹣1;(4)y= ,其中定義域與值域相同的函數(shù)有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,過(guò)左焦點(diǎn)F且垂直于x軸的直線(xiàn)與橢圓相交,所得弦長(zhǎng)為1,斜率為 ()的直線(xiàn)過(guò)點(diǎn),且與橢圓相交于不同的兩點(diǎn). 

(Ⅰ)求橢圓的方程;

(Ⅱ)在軸上是否存在點(diǎn),使得無(wú)論取何值, 為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1點(diǎn)E,F(xiàn),G分別是DD1 , AB,CC1的中點(diǎn),則異面直線(xiàn)A1E與GF所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某消費(fèi)品專(zhuān)賣(mài)店的經(jīng)營(yíng)資料顯示如下:
①這種消費(fèi)品的進(jìn)價(jià)為每件14元;
②該店月銷(xiāo)售量Q(百件)與銷(xiāo)售價(jià)格P(元)滿(mǎn)足的函數(shù)關(guān)系式為Q= ,點(diǎn)(14,22),(20,10),(26,1)在函數(shù)的圖象上;
③每月需各種開(kāi)支4400元.

(1)求月銷(xiāo)量Q(百件)與銷(xiāo)售價(jià)格P(元)的函數(shù)關(guān)系;
(2)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案