【題目】數(shù)列{an}滿足,則{an}的前60項(xiàng)和為( )
A. 3690 B. 3660 C. 1845 D. 1830
【答案】D
【解析】∵an+1+(-1)nan=2n-1,
∴當(dāng)n=2k(k∈N*)時(shí),a2k+1+a2k=4k-1①
當(dāng)n=2k+1(k∈N)時(shí),a2k+2-a2k+1=4k+1②
①+②得:a2k+a2k+2=8k.
則a2+a4+a6+a8+…+a60=(a2+a4)+(a6+a8)+…+(a58+a60)=8(1+3+…+29)=8×=1800.
由②得a2k+1=a2k+2-(4k+1),
所以a1+a3+a5+…+a59=a2+a4+…+a60-[4×(0+1+2+…+29)+30]=1800-(4×+30)=30,
∴a1+a2+…+a60=1800+30=1830.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】全世界越來(lái)越關(guān)注環(huán)境保護(hù)問題,某監(jiān)測(cè)站點(diǎn)于2016年8月某日起連續(xù)天監(jiān)測(cè)空氣質(zhì)量指數(shù),數(shù)據(jù)統(tǒng)計(jì)如下:
空氣質(zhì)量指數(shù) | |||||
空氣質(zhì)量等級(jí) | 空氣優(yōu) | 空氣良 | 輕度污染 | 中度污染 | 重度污染 |
天數(shù) |
(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出的值,并完成頻率分布直方圖:
(2)由頻率分布直方圖,求該組數(shù)據(jù)的平均數(shù)與中位數(shù);
(3)在空氣質(zhì)量指數(shù)分別為和的監(jiān)測(cè)數(shù)據(jù)中,用分層抽樣的方法抽取天,從中任意選取天,求事件 “兩天空氣都為良”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知由甲、乙兩位男生和丙、丁兩位女生組成的四人沖關(guān)小組,參加由安徽衛(wèi)視推出的大型戶外競(jìng)技類活動(dòng)《男生女生向前沖》.活動(dòng)共有四關(guān),若四關(guān)都闖過,則闖關(guān)成功,否則落水失敗.設(shè)男生闖過一至四關(guān)的概率依次是,女生闖過一至四關(guān)的概率依次是.
(Ⅰ)求男生甲闖關(guān)失敗的概率;
(Ⅱ)設(shè)表示四人沖關(guān)小組闖關(guān)成功的人數(shù),求隨機(jī)變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有5名男司機(jī),4名女司機(jī),需選派5人運(yùn)貨到吳忠.
(1)如果派3名男司機(jī)、2名女司機(jī),共有多少種不同的選派方法?
(2)至少有兩名男司機(jī),共有多少種不同的選派方法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A過定點(diǎn),并且內(nèi)切于定圓.
(1)求動(dòng)圓圓心的軌跡方程;
(2)若上存在兩個(gè)點(diǎn),(1)中曲線上有兩個(gè)點(diǎn),并且三點(diǎn)共線, 三點(diǎn)共線, ,求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子公司開發(fā)一種智能手機(jī)的配件,每個(gè)配件的成本是15元,銷售價(jià)是20元,月平均銷售件,通過改進(jìn)工藝,每個(gè)配件的成本不變,質(zhì)量和技術(shù)含金量提高,市場(chǎng)分析的結(jié)果表明,如果每個(gè)配件的銷售價(jià)提高的百分率為,那么月平均銷售量減少的百分率為,記改進(jìn)工藝后電子公司銷售該配件的月平均利潤(rùn)是(元).
(1)寫出與的函數(shù)關(guān)系式;
(2)改進(jìn)工藝后,試確定該智能手機(jī)配件的售價(jià),使電子公司銷售該配件的月平均利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)若,求函數(shù)的最小值;
(Ⅲ)求證:存在,當(dāng)時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若函數(shù)為定義域上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)存在兩個(gè)極值點(diǎn), ,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)= x·ex, , ,若對(duì)任意的,都有成立,則實(shí)數(shù)k的取值范圍是
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com