(理科)設(shè)曲線在點(diǎn)(3,2)處的切線與直線ax+y+1=0垂直,則a=

[  ]
A.

-2

B.

2

C.

D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科做)已知函數(shù)f(x)=x2-ax+3在(0,1)上為減函數(shù),函數(shù)g(x)=x2-alnx在區(qū)間(1,2)上為增函數(shù).
(1)求實(shí)數(shù)a的值;
(2)當(dāng)-1<m<0時(shí),判斷方程f(x)=2g(x)+m的解的個(gè)數(shù),并說(shuō)明理由;
(3)設(shè)函數(shù)y=f(bx)(其中0<b<1)的圖象C1與函數(shù)y=g(x)的圖象C2交于P、Q,過(guò)線段PQ的中點(diǎn)作x軸的垂線分別交C1、C2于點(diǎn)M、N.證明:曲線C1在點(diǎn)M處的切線與曲線C2在點(diǎn)N處的切線不平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:甘肅省蘭州一中2008-2009學(xué)年度高三年級(jí)上學(xué)期期中考試(數(shù)學(xué)) 題型:044

設(shè)f(x)=ax2+bx+c(a≠0),曲線y=f(x)通過(guò)點(diǎn)(0,2a+3),且在點(diǎn)(-1,f(-1))處的切線垂直y軸.

(Ⅰ)用a分別表示bc;

(Ⅱ)(文科做)當(dāng)bc取最小值時(shí),求函數(shù)F(x)=x3f(x)的單調(diào)區(qū)間.

(理科做)當(dāng)bc取最小值時(shí),求函數(shù)F(x)=-f(x)e-x的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理科做)已知函數(shù)f(x)=x2-ax+3在(0,1)上為減函數(shù),函數(shù)g(x)=x2-alnx在區(qū)間(1,2)上為增函數(shù).
(1)求實(shí)數(shù)a的值;
(2)當(dāng)-1<m<0時(shí),判斷方程f(x)=2g(x)+m的解的個(gè)數(shù),并說(shuō)明理由;
(3)設(shè)函數(shù)y=f(bx)(其中0<b<1)的圖象C1與函數(shù)y=g(x)的圖象C2交于P、Q,過(guò)線段PQ的中點(diǎn)作x軸的垂線分別交C1、C2于點(diǎn)M、N.證明:曲線C1在點(diǎn)M處的切線與曲線C2在點(diǎn)N處的切線不平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年湖北省高考數(shù)學(xué)模擬試卷(文理合卷)(解析版) 題型:解答題

(理科做)已知函數(shù)f(x)=x2-ax+3在(0,1)上為減函數(shù),函數(shù)g(x)=x2-alnx在區(qū)間(1,2)上為增函數(shù).
(1)求實(shí)數(shù)a的值;
(2)當(dāng)-1<m<0時(shí),判斷方程f(x)=2g(x)+m的解的個(gè)數(shù),并說(shuō)明理由;
(3)設(shè)函數(shù)y=f(bx)(其中0<b<1)的圖象C1與函數(shù)y=g(x)的圖象C2交于P、Q,過(guò)線段PQ的中點(diǎn)作x軸的垂線分別交C1、C2于點(diǎn)M、N.證明:曲線C1在點(diǎn)M處的切線與曲線C2在點(diǎn)N處的切線不平行.

查看答案和解析>>

同步練習(xí)冊(cè)答案