【題目】已知命題方程有兩個(gè)不等的實(shí)根;命題方程無(wú)實(shí)根,若“”為真,“”為假,則實(shí)數(shù)的取值范圍為___________.(寫(xiě)成區(qū)間的形式)

【答案】

【解析】

分別求出命題p、q為真命題時(shí),a的取值范圍,根據(jù)復(fù)合命題真值表判斷若“”為真,“”為假時(shí),命題p、q一真一假,可求a的取值范圍.

∵方程x2+ax+1=0有兩個(gè)不等的實(shí)根,

∴△=a2﹣40a2a﹣2,

命題p為真時(shí),a2a﹣2;

∵方程4x2+2(a﹣4)x+1=0無(wú)實(shí)根,

∴△=4(a﹣4)2﹣1602a6,

命題q為真時(shí),2a6;

由復(fù)合命題真值表知:若“”為真,“”為假時(shí),命題p、q一真一假

當(dāng)pq假時(shí),a6a﹣2,

當(dāng)pq真時(shí),a,

綜上a的范圍是a6a﹣2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M過(guò)C(1,-1),D(-1,1)兩點(diǎn),且圓心M在x+y-2=0上.

(1)求圓M的方程;

(2)設(shè)點(diǎn)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),過(guò)點(diǎn)作準(zhǔn)線的垂線,垂足為,當(dāng)點(diǎn)坐標(biāo)為時(shí),為正三角形,則此時(shí)的面積為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某海礁A處有一風(fēng)暴中心,距離風(fēng)暴中心A正東方向200km的B處有一艘輪船,正以北偏西a(a為銳角)角方向航行,速度為40km/h.已知距離風(fēng)暴中心180km以內(nèi)的水域受其影響.

(1)若輪船不被風(fēng)暴影響,求角α的正切值的最大值?

(2)若輪船航行方向?yàn)楸逼?5°,求輪船被風(fēng)暴影響持續(xù)多少時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 在(﹣∞,+∞)上是具有單調(diào)性,則實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有如下3個(gè)命題;

①雙曲線上任意一點(diǎn)到兩條漸近線的距離乘積是定值;

②雙曲線的離心率分別是,則是定值;

③過(guò)拋物線的頂點(diǎn)任作兩條互相垂直的直線與拋物線的交點(diǎn)分別是,則直線過(guò)定點(diǎn);其中正確的命題有(  )

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的焦距為,離心率為,橢圓的右頂點(diǎn)為.

(1)求該橢圓的方程;

(2)過(guò)點(diǎn)作直線交橢圓于兩個(gè)不同點(diǎn),求證:直線的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C: =1的右焦點(diǎn)F,過(guò)焦點(diǎn)F的直線l0⊥x軸,P(x0 , y0)(x0y0≠0)為C上任意一點(diǎn),C在點(diǎn)P處的切線為l,l與l0相交于點(diǎn)M,與直線l1:x=3相交于N.
(I) 求證;直線 =1是橢圓C在點(diǎn)P處的切線;
(Ⅱ)求證: 為定值,并求此定值;
(Ⅲ)請(qǐng)問(wèn)△ONP(O為坐標(biāo)原點(diǎn))的面積是否存在最小值?若存在,請(qǐng)求出最小及此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC= AB= ,平面PBC⊥平面ABCD.

(1)求證:AC⊥PB;
(2)若PB=PC= ,問(wèn)在側(cè)棱PB上是否存在一點(diǎn)M,使得二面角M﹣AD﹣B的余弦值為 ?若存在,求出 的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案