(本題滿分16分)

圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用的舊墻需維修),其他三面圍墻要新建,在舊墻對面的新墻上要留一個寬度為2m的進出口,如圖所示已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設(shè)利用的舊墻長度為x(單位:m),修建此矩形場地圍墻的總費用為y(單位:元)

⑴將y表示為x的函數(shù);

⑵寫出f(x)的單調(diào)區(qū)間,并證明;

⑶根據(jù)⑵,試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。

 

【答案】

 

解:⑴如圖,設(shè)矩形的另一邊長為a m

         則y=45x+180(x-2)+180×2a=225x+360a-360

         由已知  ax=360a=

       ∴y=225x+-360(x>0)   ……………………………………………6′

       ⑵任取x1>x2>0

          y1y2=225(x1x2)+

               =(x1x2)( 225)      ……………………………………10′

            x1x2>()2=242時,  y1>y2

                     x1x2<24   時,  y1y2  

                  x1>x224

              y1>y2       24> x1>x2>0

              y1<y2

        f(x)在(024)單調(diào)減,在(24,+∞)單調(diào)增   …………………14′

       ⑶x=24時,修建圍墻的總費用最小,最小費用為10440…………………16

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

本題滿分16分)兩個數(shù)列{an},{bn},滿足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(參考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求證:{bn}為等差數(shù)列的充要條件是{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.

已知函數(shù)、是常數(shù),且),對定義域內(nèi)任意、),恒有成立.

(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;

(2)求的取值范圍,使得

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分16分)已知數(shù)列的前項和為,且.數(shù)列中,,

 .(1)求數(shù)列的通項公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項公式;(3)求證:①;②

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇省私立無錫光華學校2009—2010學年高二第二學期期末考試 題型:解答題

本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學卷(文) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)

已知函數(shù)

(1)判斷并證明上的單調(diào)性;

(2)若存在,使,則稱為函數(shù)的不動點,現(xiàn)已知該函數(shù)有且僅有一個不動點,求的值;

(3)若上恒成立 , 求的取值范圍.

 

查看答案和解析>>

同步練習冊答案