【題目】某老師對全班名學(xué)生學(xué)習(xí)積極性和參加社團(tuán)活動情況進(jìn)行調(diào)查,統(tǒng)計數(shù)據(jù)如下所示:
參加社團(tuán)活動 | 不參加社團(tuán)活動 | 合計 | |
學(xué)習(xí)積極性高 | |||
學(xué)習(xí)積極性一般 | |||
合計 |
(1)請把表格數(shù)據(jù)補(bǔ)充完整;
(2)若從不參加社團(tuán)活動的人按照分層抽樣的方法選取人,再從所選出的人中隨機(jī)選取兩人作為代表發(fā)言,求至少有一個學(xué)習(xí)積極性高的概率;
(3)運(yùn)用獨(dú)立性檢驗的思想方法分析:請你判斷是否有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參與社團(tuán)活動由關(guān)系?
附:
【答案】(1)見解析;(2);(3)有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參與社團(tuán)活動由關(guān)系.
【解析】試題分析:(1)根據(jù)列聯(lián)表給出的數(shù)據(jù)可以補(bǔ)全其它數(shù)據(jù)(2)人選人,其中學(xué)習(xí)積極性高的人記為,學(xué)習(xí)積極性一般的人,記為,從這人中任選兩人,共有以下個等可能性基本事件: ,
則至少有以為學(xué)習(xí)積極性高的事件有個,根據(jù)古典概型的概率計算即得解.
(3)根據(jù)列聯(lián)表中所給的數(shù)據(jù),代入求這組數(shù)據(jù)的觀測值的公式,求出觀測值,把觀測值同臨界值進(jìn)行比較,得到有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動情況有關(guān)系.
試題解析:
(1)
參加社團(tuán)活動 | 不參加社團(tuán)活動 | 合計 | |
學(xué)習(xí)積極性高 | |||
學(xué)習(xí)積極性一般 | |||
合計 |
(2)人選人,其中學(xué)習(xí)積極性高的人記為,學(xué)習(xí)積極性一般的人,記為,從這人中任選兩人,共有以下個等可能性基本事件: ,
則至少有以為學(xué)習(xí)積極性高的事件有個,所以至少有一位學(xué)習(xí)積極性高的概率.
(3)所以大約有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參與社團(tuán)活動由關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將甲、乙兩顆骰子先后各拋一次,a、b分別表示拋擲甲、乙兩顆骰子所出現(xiàn)的點(diǎn)數(shù)﹒圖中三角形陰影部分的三個頂點(diǎn)為(0,0)、(4,0)和(0,4).
(1)若點(diǎn)P(a,b)落在如圖陰影所表示的平面區(qū)域(包括邊界)的事件記為A,求事件A的概率;
(2)若點(diǎn)P(a,b)落在直線x+y=m(m為常數(shù))上,且使此事件的概率P最大,求m和P的值﹒
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在正實數(shù)集上的函數(shù),其中,設(shè)兩曲線有公共點(diǎn),且在公共點(diǎn)處的切線相同.
(1)若,求實數(shù)的值;
(2)用表示,并求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體EF﹣ABCD中,CDEF為邊長為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(1)求證:AC⊥FB
(2)求二面角E﹣FB﹣C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD=CD=2AB=2,PA⊥AD,AB∥CD,CD⊥AD,E為PC的中點(diǎn),且DE=EC.
(1)求證:PA⊥面ABCD;
(2)設(shè)PA=a,若平面EBD與平面ABCD所成銳二面角θ∈( , ),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+6.
(1)當(dāng)a=5時,解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P是橢圓 上一點(diǎn),M、N分別是兩圓:(x+4)2+y2=1和(x﹣4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值的分別為( )
A.9,12
B.8,11
C.8,12
D.10,12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com